Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.11584
Cited By
PrivFairFL: Privacy-Preserving Group Fairness in Federated Learning
23 May 2022
Sikha Pentyala
Nicola Neophytou
A. Nascimento
Martine De Cock
G. Farnadi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PrivFairFL: Privacy-Preserving Group Fairness in Federated Learning"
12 / 12 papers shown
Title
RESFL: An Uncertainty-Aware Framework for Responsible Federated Learning by Balancing Privacy, Fairness and Utility in Autonomous Vehicles
Dawood Wasif
T. Moore
Jin-Hee Cho
50
0
0
20 Mar 2025
Empirical Analysis of Privacy-Fairness-Accuracy Trade-offs in Federated Learning: A Step Towards Responsible AI
Dawood Wasif
Dian Chen
Sindhuja Madabushi
Nithin Alluru
T. Moore
Jin-Hee Cho
FedML
95
0
0
20 Mar 2025
Federated Fairness Analytics: Quantifying Fairness in Federated Learning
Oscar Dilley
Juan Marcelo Parra Ullauri
Rasheed Hussain
Dimitra Simeonidou
FedML
42
0
0
15 Aug 2024
PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning
Luca Corbucci
Mikko A. Heikkilä
David Solans Noguero
Anna Monreale
Nicolas Kourtellis
FedML
52
3
0
21 Jul 2024
Linkage on Security, Privacy and Fairness in Federated Learning: New Balances and New Perspectives
Linlin Wang
Tianqing Zhu
Wanlei Zhou
Philip S. Yu
34
1
0
16 Jun 2024
Fairness and Privacy-Preserving in Federated Learning: A Survey
Taki Hasan Rafi
Faiza Anan Noor
Tahmid Hussain
Dong-Kyu Chae
FedML
35
39
0
14 Jun 2023
Fair Differentially Private Federated Learning Framework
Ayush K. Varshney
Sonakshi Garg
Arka P. Ghosh
Sargam Gupta
FedML
17
0
0
23 May 2023
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
33
160
0
14 Jul 2022
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
69
181
0
06 Dec 2021
Unified Group Fairness on Federated Learning
Fengda Zhang
Kun Kuang
Yuxuan Liu
Long Chen
Chao-Xiang Wu
Fei Wu
Jiaxun Lu
Yunfeng Shao
Jun Xiao
FedML
63
20
0
09 Nov 2021
Enforcing fairness in private federated learning via the modified method of differential multipliers
Borja Rodríguez Gálvez
Filip Granqvist
Rogier van Dalen
M. Seigel
FedML
48
52
0
17 Sep 2021
Federated Evaluation and Tuning for On-Device Personalization: System Design & Applications
Matthias Paulik
M. Seigel
Henry Mason
Dominic Telaar
Joris Kluivers
...
Dominic Hughes
O. Javidbakht
Fei Dong
Rehan Rishi
Stanley Hung
FedML
180
126
0
16 Feb 2021
1