ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.11507
  4. Cited By
Computationally Efficient Horizon-Free Reinforcement Learning for Linear
  Mixture MDPs

Computationally Efficient Horizon-Free Reinforcement Learning for Linear Mixture MDPs

23 May 2022
Dongruo Zhou
Quanquan Gu
ArXivPDFHTML

Papers citing "Computationally Efficient Horizon-Free Reinforcement Learning for Linear Mixture MDPs"

12 / 12 papers shown
Title
Towards Optimal Differentially Private Regret Bounds in Linear MDPs
Towards Optimal Differentially Private Regret Bounds in Linear MDPs
Sharan Sahu
60
0
0
12 Apr 2025
Improved Regret Analysis in Gaussian Process Bandits: Optimality for Noiseless Reward, RKHS norm, and Non-Stationary Variance
S. Iwazaki
Shion Takeno
78
1
0
10 Feb 2025
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
H. Bui
Enrique Mallada
Anqi Liu
111
0
0
08 Nov 2024
Horizon-Free Regret for Linear Markov Decision Processes
Horizon-Free Regret for Linear Markov Decision Processes
Zihan Zhang
Jason D. Lee
Yuxin Chen
Simon S. Du
33
3
0
15 Mar 2024
Variance-Dependent Regret Bounds for Non-stationary Linear Bandits
Variance-Dependent Regret Bounds for Non-stationary Linear Bandits
Zhiyong Wang
Jize Xie
Yi Chen
J. C. Lui
Dongruo Zhou
28
0
0
15 Mar 2024
Reinforcement Learning from Human Feedback with Active Queries
Reinforcement Learning from Human Feedback with Active Queries
Kaixuan Ji
Jiafan He
Quanquan Gu
24
17
0
14 Feb 2024
A Theoretical Analysis of Optimistic Proximal Policy Optimization in
  Linear Markov Decision Processes
A Theoretical Analysis of Optimistic Proximal Policy Optimization in Linear Markov Decision Processes
Han Zhong
Tong Zhang
32
26
0
15 May 2023
SPEED: Experimental Design for Policy Evaluation in Linear
  Heteroscedastic Bandits
SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits
Subhojyoti Mukherjee
Qiaomin Xie
Josiah P. Hanna
R. Nowak
OffRL
50
5
0
29 Jan 2023
Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision
  Processes
Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision Processes
Jiafan He
Heyang Zhao
Dongruo Zhou
Quanquan Gu
OffRL
51
53
0
12 Dec 2022
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial
  Corruptions
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions
Jiafan He
Dongruo Zhou
Tong Zhang
Quanquan Gu
66
46
0
13 May 2022
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear
  Mixture MDP
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
71
36
0
29 Jan 2021
Optimism in Reinforcement Learning with Generalized Linear Function
  Approximation
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
135
135
0
09 Dec 2019
1