ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.10914
  4. Cited By
Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
v1v2v3 (latest)

Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited

22 May 2022
Nils M. Kriege
ArXiv (abs)PDFHTML

Papers citing "Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited"

22 / 22 papers shown
Title
Weisfeiler and Leman go Machine Learning: The Story so far
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten Borgwardt
GNN
117
118
0
18 Dec 2021
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with
  Graphs
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs
Christopher Morris
Matthias Fey
Nils M. Kriege
GNN
55
24
0
12 May 2021
The Logic of Graph Neural Networks
The Logic of Graph Neural Networks
Martin Grohe
AI4CE
56
92
0
29 Apr 2021
Graph Kernels: State-of-the-Art and Future Challenges
Graph Kernels: State-of-the-Art and Future Challenges
Karsten Borgwardt
Elisabetta Ghisu
Felipe Llinares-López
Leslie O’Bray
Bastian Rieck
AI4TS
86
106
0
07 Nov 2020
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
245
828
0
16 Jul 2020
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
108
695
0
09 Jun 2020
Graph Homomorphism Convolution
Graph Homomorphism Convolution
Hoang NT
Takanori Maehara
160
41
0
03 May 2020
Let's Agree to Degree: Comparing Graph Convolutional Networks in the
  Message-Passing Framework
Let's Agree to Degree: Comparing Graph Convolutional Networks in the Message-Passing Framework
Floris Geerts
Filip Mazowiecki
Guillermo A. Pérez
GNN
99
38
0
06 Apr 2020
Convolutional Kernel Networks for Graph-Structured Data
Convolutional Kernel Networks for Graph-Structured Data
Dexiong Chen
Laurent Jacob
Julien Mairal
GNN
88
55
0
11 Mar 2020
Understanding Isomorphism Bias in Graph Data Sets
Understanding Isomorphism Bias in Graph Data Sets
Sergei Ivanov
Sergei Sviridov
Evgeny Burnaev
FaMLAI4CE
115
38
0
26 Oct 2019
Wasserstein Weisfeiler-Lehman Graph Kernels
Wasserstein Weisfeiler-Lehman Graph Kernels
Matteo Togninalli
M. Ghisu
Felipe Llinares-López
Bastian Rieck
Karsten Borgwardt
76
201
0
04 Jun 2019
A Survey on Graph Kernels
A Survey on Graph Kernels
Nils M. Kriege
Fredrik D. Johansson
Christopher Morris
151
419
0
28 Mar 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaMLGNNAI4TSAI4CE
807
8,597
0
03 Jan 2019
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
194
1,646
0
04 Oct 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
261
7,710
0
01 Oct 2018
Deriving Neural Architectures from Sequence and Graph Kernels
Deriving Neural Architectures from Sequence and Graph Kernels
Tao Lei
Wengong Jin
Regina Barzilay
Tommi Jaakkola
GNN
96
137
0
25 May 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
441
2,483
0
10 Mar 2017
A Unifying View of Explicit and Implicit Feature Maps of Graph Kernels
A Unifying View of Explicit and Implicit Feature Maps of Graph Kernels
Nils M. Kriege
Marion Neumann
Christopher Morris
Kristian Kersting
Petra Mutzel
89
22
0
02 Mar 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
684
29,183
0
09 Sep 2016
On Valid Optimal Assignment Kernels and Applications to Graph
  Classification
On Valid Optimal Assignment Kernels and Applications to Graph Classification
Nils M. Kriege
Pierre-Louis Giscard
Richard C. Wilson
96
215
0
03 Jun 2016
On the Definiteness of Earth Mover's Distance and Its Relation to Set
  Intersection
On the Definiteness of Earth Mover's Distance and Its Relation to Set Intersection
Andrew Gardner
C. A. Duncan
Jinko Kanno
R. Selmic
40
13
0
09 Oct 2015
Graph Kernels
Graph Kernels
S.V.N. Vishwanathan
Karsten Borgwardt
I. Kondor
N. Schraudolph
154
1,206
0
01 Jul 2008
1