ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.10041
  4. Cited By
Posterior Refinement Improves Sample Efficiency in Bayesian Neural
  Networks

Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks

20 May 2022
Agustinus Kristiadi
Runa Eschenhagen
Philipp Hennig
    BDL
ArXivPDFHTML

Papers citing "Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks"

13 / 13 papers shown
Title
On Local Posterior Structure in Deep Ensembles
On Local Posterior Structure in Deep Ensembles
Mikkel Jordahn
Jonas Vestergaard Jensen
Mikkel N. Schmidt
Michael Riis Andersen
UQCV
BDL
OOD
64
0
0
17 Mar 2025
Flat Posterior Does Matter For Bayesian Model Averaging
Flat Posterior Does Matter For Bayesian Model Averaging
Sungjun Lim
Jeyoon Yeom
Sooyon Kim
Hoyoon Byun
Jinho Kang
Yohan Jung
Jiyoung Jung
Kyungwoo Song
AAML
BDL
48
0
0
21 Jun 2024
Trustworthy Personalized Bayesian Federated Learning via Posterior
  Fine-Tune
Trustworthy Personalized Bayesian Federated Learning via Posterior Fine-Tune
Mengen Luo
Chi Xu
E. Kuruoglu
FedML
31
0
0
25 Feb 2024
A Sober Look at LLMs for Material Discovery: Are They Actually Good for
  Bayesian Optimization Over Molecules?
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Marta Skreta
Pascal Poupart
Alán Aspuru-Guzik
Geoff Pleiss
30
21
0
07 Feb 2024
Preventing Arbitrarily High Confidence on Far-Away Data in
  Point-Estimated Discriminative Neural Networks
Preventing Arbitrarily High Confidence on Far-Away Data in Point-Estimated Discriminative Neural Networks
Ahmad Rashid
Serena Hacker
Guojun Zhang
Agustinus Kristiadi
Pascal Poupart
OODD
36
0
0
07 Nov 2023
Implicit Variational Inference for High-Dimensional Posteriors
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
Kristoffer Stensbo-Smidt
Wouter Boomsma
J. Frellsen
BDL
26
1
0
10 Oct 2023
On the Disconnect Between Theory and Practice of Neural Networks: Limits
  of the NTK Perspective
On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective
Jonathan Wenger
Felix Dangel
Agustinus Kristiadi
36
0
0
29 Sep 2023
Collapsed Inference for Bayesian Deep Learning
Collapsed Inference for Bayesian Deep Learning
Zhe Zeng
Guy Van den Broeck
FedML
BDL
UQCV
31
8
0
16 Jun 2023
Riemannian Laplace approximations for Bayesian neural networks
Riemannian Laplace approximations for Bayesian neural networks
Federico Bergamin
Pablo Moreno-Muñoz
Søren Hauberg
Georgios Arvanitidis
BDL
35
6
0
12 Jun 2023
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
20
8
0
17 Apr 2023
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Fast Predictive Uncertainty for Classification with Bayesian Deep
  Networks
Fast Predictive Uncertainty for Classification with Bayesian Deep Networks
Marius Hobbhahn
Agustinus Kristiadi
Philipp Hennig
BDL
UQCV
76
31
0
02 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
1