Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.09335
Cited By
A Simple Yet Effective SVD-GCN for Directed Graphs
19 May 2022
Chunya Zou
Andi Han
Lequan Lin
Junbin Gao
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Simple Yet Effective SVD-GCN for Directed Graphs"
7 / 7 papers shown
Title
Graph Convolutions Enrich the Self-Attention in Transformers!
Jeongwhan Choi
Hyowon Wi
Jayoung Kim
Yehjin Shin
Kookjin Lee
Nathaniel Trask
Noseong Park
30
4
0
07 Dec 2023
Unifying over-smoothing and over-squashing in graph neural networks: A physics informed approach and beyond
Zhiqi Shao
Dai Shi
Andi Han
Yi Guo
Qianchuan Zhao
Junbin Gao
33
11
0
06 Sep 2023
Revisiting Generalized p-Laplacian Regularized Framelet GCNs: Convergence, Energy Dynamic and Training with Non-Linear Diffusion
Dai Shi
Zhiqi Shao
Yi Guo
Qianchuan Zhao
Junbin Gao
34
1
0
25 May 2023
A Fractional Graph Laplacian Approach to Oversmoothing
Sohir Maskey
Raffaele Paolino
Aras Bacho
Gitta Kutyniok
27
29
0
22 May 2023
Generalized energy and gradient flow via graph framelets
Andi Han
Dai Shi
Zhiqi Shao
Junbin Gao
75
13
0
08 Oct 2022
How Framelets Enhance Graph Neural Networks
Xuebin Zheng
Bingxin Zhou
Junbin Gao
Yu Guang Wang
Pietro Lió
Ming Li
Guido Montúfar
59
69
0
13 Feb 2021
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
1