ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.09329
  4. Cited By
Dataset Pruning: Reducing Training Data by Examining Generalization
  Influence

Dataset Pruning: Reducing Training Data by Examining Generalization Influence

19 May 2022
Shuo Yang
Zeke Xie
Hanyu Peng
Minjing Xu
Mingming Sun
P. Li
    DD
ArXivPDFHTML

Papers citing "Dataset Pruning: Reducing Training Data by Examining Generalization Influence"

25 / 25 papers shown
Title
When Dynamic Data Selection Meets Data Augmentation
When Dynamic Data Selection Meets Data Augmentation
S. M. I. Simon X. Yang
Peng Ye
F. Shen
Dongzhan Zhou
24
0
0
02 May 2025
Latent Video Dataset Distillation
Latent Video Dataset Distillation
Ning Li
Antai Andy Liu
Jingran Zhang
Justin Cui
DD
VGen
65
0
0
23 Apr 2025
Gradient-based Sample Selection for Faster Bayesian Optimization
Gradient-based Sample Selection for Faster Bayesian Optimization
Qiyu Wei
Haowei Wang
Zirui Cao
Songhao Wang
Richard Allmendinger
Mauricio A Álvarez
24
0
0
10 Apr 2025
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Anish Acharya
Sujay Sanghavi
Alexandros G. Dimakis
Inderjit S Dhillon
AAML
57
0
0
01 Apr 2025
Do we really have to filter out random noise in pre-training data for language models?
Do we really have to filter out random noise in pre-training data for language models?
Jinghan Ru
Yuxin Xie
Xianwei Zhuang
Yuguo Yin
Zhihui Guo
Zhiming Liu
Qianli Ren
Yuexian Zou
83
2
0
10 Feb 2025
Geometric Median (GM) Matching for Robust Data Pruning
Geometric Median (GM) Matching for Robust Data Pruning
Anish Acharya
Inderjit S Dhillon
Sujay Sanghavi
AAML
59
0
0
20 Jan 2025
Most Influential Subset Selection: Challenges, Promises, and Beyond
Most Influential Subset Selection: Challenges, Promises, and Beyond
Yuzheng Hu
Pingbang Hu
Han Zhao
Jiaqi W. Ma
TDI
142
2
0
10 Jan 2025
Data Pruning Can Do More: A Comprehensive Data Pruning Approach for
  Object Re-identification
Data Pruning Can Do More: A Comprehensive Data Pruning Approach for Object Re-identification
Zi Yang
Haojin Yang
Soumajit Majumder
Jorge M. Cardoso
Guillermo Gallego
MoMe
VLM
93
1
0
13 Dec 2024
Paint Outside the Box: Synthesizing and Selecting Training Data for Visual Grounding
Paint Outside the Box: Synthesizing and Selecting Training Data for Visual Grounding
Zilin Du
Haoxin Li
Jianfei Yu
Boyang Li
146
0
0
01 Dec 2024
WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models
WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models
Jinghan Jia
Jiancheng Liu
Yihua Zhang
Parikshit Ram
Nathalie Baracaldo
Sijia Liu
MU
35
2
0
23 Oct 2024
Accelerating Deep Learning with Fixed Time Budget
Accelerating Deep Learning with Fixed Time Budget
Muhammad Asif Khan
R. Hamila
Hamid Menouar
28
0
0
03 Oct 2024
Unsupervised Domain Adaptation Via Data Pruning
Unsupervised Domain Adaptation Via Data Pruning
Andrea Napoli
Paul White
36
1
0
18 Sep 2024
CHG Shapley: Efficient Data Valuation and Selection towards Trustworthy Machine Learning
CHG Shapley: Efficient Data Valuation and Selection towards Trustworthy Machine Learning
Huaiguang Cai
FedML
TDI
56
1
0
17 Jun 2024
M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy
M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy
Hansong Zhang
Shikun Li
Pengju Wang
Dan Zeng
Shiming Ge
DD
19
21
0
26 Dec 2023
Deeper Understanding of Black-box Predictions via Generalized Influence
  Functions
Deeper Understanding of Black-box Predictions via Generalized Influence Functions
Hyeonsu Lyu
Jonggyu Jang
Sehyun Ryu
H. Yang
TDI
AI4CE
18
5
0
09 Dec 2023
DEFT: Data Efficient Fine-Tuning for Pre-Trained Language Models via
  Unsupervised Core-Set Selection
DEFT: Data Efficient Fine-Tuning for Pre-Trained Language Models via Unsupervised Core-Set Selection
Devleena Das
Vivek Khetan
21
0
0
25 Oct 2023
D2 Pruning: Message Passing for Balancing Diversity and Difficulty in
  Data Pruning
D2 Pruning: Message Passing for Balancing Diversity and Difficulty in Data Pruning
A. Maharana
Prateek Yadav
Mohit Bansal
24
28
0
11 Oct 2023
GIO: Gradient Information Optimization for Training Dataset Selection
GIO: Gradient Information Optimization for Training Dataset Selection
Dante Everaert
Christopher Potts
21
3
0
20 Jun 2023
NLU on Data Diets: Dynamic Data Subset Selection for NLP Classification
  Tasks
NLU on Data Diets: Dynamic Data Subset Selection for NLP Classification Tasks
Jean-Michel Attendu
Jean-Philippe Corbeil
28
15
0
05 Jun 2023
Condensing Graphs via One-Step Gradient Matching
Condensing Graphs via One-Step Gradient Matching
Wei Jin
Xianfeng Tang
Haoming Jiang
Zheng Li
Danqing Zhang
Jiliang Tang
Bin Ying
DD
28
98
0
15 Jun 2022
Dataset Condensation with Differentiable Siamese Augmentation
Dataset Condensation with Differentiable Siamese Augmentation
Bo-Lu Zhao
Hakan Bilen
DD
196
288
0
16 Feb 2021
Free Lunch for Few-shot Learning: Distribution Calibration
Free Lunch for Few-shot Learning: Distribution Calibration
Shuo Yang
Lu Liu
Min Xu
OODD
210
322
0
16 Jan 2021
Single-View 3D Object Reconstruction from Shape Priors in Memory
Single-View 3D Object Reconstruction from Shape Priors in Memory
Shuo Yang
Min Xu
Haozhe Xie
Stuart Perry
H. Yao
3DV
134
8
0
08 Mar 2020
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
188
1,027
0
06 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
329
11,681
0
09 Mar 2017
1