Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.08532
Cited By
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
17 May 2022
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma"
21 / 21 papers shown
Title
Tukey Depth Mechanisms for Practical Private Mean Estimation
Gavin Brown
Lydia Zakynthinou
39
0
0
25 Feb 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
Clément Lalanne
Jean-Michel Loubes
David Rodríguez-Vítores
FedML
41
0
0
03 Feb 2025
Dimension-free Private Mean Estimation for Anisotropic Distributions
Yuval Dagan
Michael I. Jordan
Xuelin Yang
Lydia Zakynthinou
Nikita Zhivotovskiy
37
2
0
01 Nov 2024
Distribution Learnability and Robustness
Shai Ben-David
Alex Bie
Gautam Kamath
Tosca Lechner
32
2
0
25 Jun 2024
Lower Bounds for Private Estimation of Gaussian Covariance Matrices under All Reasonable Parameter Regimes
V. S. Portella
Nick Harvey
16
3
0
26 Apr 2024
Private Gradient Descent for Linear Regression: Tighter Error Bounds and Instance-Specific Uncertainty Estimation
Gavin Brown
Krishnamurthy Dvijotham
Georgina Evans
Daogao Liu
Adam D. Smith
Abhradeep Thakurta
34
3
0
21 Feb 2024
Better and Simpler Lower Bounds for Differentially Private Statistical Estimation
Shyam Narayanan
FedML
19
9
0
10 Oct 2023
Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples
Mohammad Afzali
H. Ashtiani
Christopher Liaw
24
5
0
07 Sep 2023
Concentrated Differential Privacy for Bandits
Achraf Azize
D. Basu
26
4
0
01 Sep 2023
Smooth Lower Bounds for Differentially Private Algorithms via Padding-and-Permuting Fingerprinting Codes
Naty Peter
Eliad Tsfadia
Jonathan R. Ullman
34
4
0
14 Jul 2023
Improving the Utility of Differentially Private Clustering through Dynamical Processing
Junyoung Byun
Yujin Choi
Jaewoo Lee
9
1
0
27 Apr 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
Vikrant Singhal
29
9
0
13 Apr 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
40
23
0
07 Mar 2023
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions
Gavin Brown
Samuel B. Hopkins
Adam D. Smith
FedML
19
17
0
28 Jan 2023
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Daniel Alabi
Pravesh Kothari
Pranay Tankala
Prayaag Venkat
Fred Zhang
64
0
0
15 Dec 2022
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
11
49
0
09 Dec 2022
Differentially Private Covariance Revisited
Wei Dong
Yuting Liang
K. Yi
FedML
10
13
0
28 May 2022
DP-PCA: Statistically Optimal and Differentially Private PCA
Xiyang Liu
Weihao Kong
Prateek Jain
Sewoong Oh
27
21
0
27 May 2022
A Private and Computationally-Efficient Estimator for Unbounded Gaussians
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
Thomas Steinke
Jonathan R. Ullman
50
39
0
08 Nov 2021
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
37
41
0
19 Oct 2020
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
66
148
0
01 May 2018
1