ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.07610
  4. Cited By
AnySeq/GPU: A Novel Approach for Faster Sequence Alignment on GPUs

AnySeq/GPU: A Novel Approach for Faster Sequence Alignment on GPUs

16 May 2022
André Müller
B. Schmidt
Richard Membarth
Roland Leißa
Sebastian Hack
ArXivPDFHTML

Papers citing "AnySeq/GPU: A Novel Approach for Faster Sequence Alignment on GPUs"

1 / 1 papers shown
Title
Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on
  the Graphcore IPU
Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU
Luk Burchard
Max Zhao
J. Langguth
A. Buluç
Giulia Guidi
24
6
0
17 Apr 2023
1