Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.07195
Cited By
A comparison of PINN approaches for drift-diffusion equations on metric graphs
15 May 2022
J. Blechschmidt
Jan-Frederik Pietschman
Tom-Christian Riemer
Martin Stoll
M. Winkler
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A comparison of PINN approaches for drift-diffusion equations on metric graphs"
9 / 9 papers shown
Title
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
64
225
0
10 Jun 2020
A deep learning framework for solution and discovery in solid mechanics
E. Haghighat
M. Raissi
A. Moure
H. Gómez
R. Juanes
AI4CE
PINN
76
57
0
14 Feb 2020
Physics-Informed Neural Networks for Power Systems
George S. Misyris
Andreas Venzke
Spyros Chatzivasileiadis
PINN
AI4CE
67
219
0
09 Nov 2019
Constraint-Aware Neural Networks for Riemann Problems
Jim Magiera
Deep Ray
J. Hesthaven
C. Rohde
AI4CE
PINN
47
60
0
29 Apr 2019
Deep learning observables in computational fluid dynamics
K. Lye
Siddhartha Mishra
Deep Ray
OOD
AI4CE
108
159
0
07 Mar 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
108
867
0
18 Jan 2019
Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations
Siyu Dai
Shawn Schaffert
Andreas G. Hofmann
125
365
0
05 Nov 2018
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data
M. Raissi
A. Yazdani
George Karniadakis
AI4CE
PINN
83
160
0
13 Aug 2018
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
83
551
0
10 Jan 2017
1