ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.07195
  4. Cited By
A comparison of PINN approaches for drift-diffusion equations on metric
  graphs

A comparison of PINN approaches for drift-diffusion equations on metric graphs

15 May 2022
J. Blechschmidt
Jan-Frederik Pietschman
Tom-Christian Riemer
Martin Stoll
M. Winkler
ArXiv (abs)PDFHTML

Papers citing "A comparison of PINN approaches for drift-diffusion equations on metric graphs"

9 / 9 papers shown
Title
Physics informed deep learning for computational elastodynamics without
  labeled data
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINNAI4CE
64
225
0
10 Jun 2020
A deep learning framework for solution and discovery in solid mechanics
A deep learning framework for solution and discovery in solid mechanics
E. Haghighat
M. Raissi
A. Moure
H. Gómez
R. Juanes
AI4CEPINN
76
57
0
14 Feb 2020
Physics-Informed Neural Networks for Power Systems
Physics-Informed Neural Networks for Power Systems
George S. Misyris
Andreas Venzke
Spyros Chatzivasileiadis
PINNAI4CE
67
219
0
09 Nov 2019
Constraint-Aware Neural Networks for Riemann Problems
Constraint-Aware Neural Networks for Riemann Problems
Jim Magiera
Deep Ray
J. Hesthaven
C. Rohde
AI4CEPINN
47
60
0
29 Apr 2019
Deep learning observables in computational fluid dynamics
Deep learning observables in computational fluid dynamics
K. Lye
Siddhartha Mishra
Deep Ray
OODAI4CE
108
159
0
07 Mar 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINNAI4CE
108
867
0
18 Jan 2019
Physics-Informed Generative Adversarial Networks for Stochastic
  Differential Equations
Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations
Siyu Dai
Shawn Schaffert
Andreas G. Hofmann
125
365
0
05 Nov 2018
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework
  for Assimilating Flow Visualization Data
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data
M. Raissi
A. Yazdani
George Karniadakis
AI4CEPINN
83
160
0
13 Aug 2018
Machine Learning of Linear Differential Equations using Gaussian
  Processes
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
83
551
0
10 Jan 2017
1