Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.06750
Cited By
Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and Benchmarking
13 May 2022
Hanna Krasowski
Jakob Thumm
Marlon Müller
Lukas Schäfer
Xiao Wang
Matthias Althoff
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and Benchmarking"
6 / 6 papers shown
Title
Defining and Characterizing Reward Hacking
Joar Skalse
Nikolaus H. R. Howe
Dmitrii Krasheninnikov
David M. Krueger
59
55
0
27 Sep 2022
Provably Safe Deep Reinforcement Learning for Robotic Manipulation in Human Environments
Jakob Thumm
Matthias Althoff
52
34
0
12 May 2022
Runtime Safety Assurance for Learning-enabled Control of Autonomous Driving Vehicles
Shengduo Chen
Yao Sun
Dachuan Li
Qiang Wang
Qi Hao
J. Sifakis
57
15
0
28 Sep 2021
Modular Deep Reinforcement Learning for Continuous Motion Planning with Temporal Logic
Mingyu Cai
Mohammadhosein Hasanbeig
Shaoping Xiao
Alessandro Abate
Z. Kan
80
86
0
24 Feb 2021
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
340
1,960
0
04 May 2020
Deep Reinforcement Learning for Autonomous Driving: A Survey
B. R. Kiran
Ibrahim Sobh
V. Talpaert
Patrick Mannion
A. A. Sallab
S. Yogamani
P. Pérez
165
1,632
0
02 Feb 2020
1