Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.06494
Cited By
A hybrid data driven-physics constrained Gaussian process regression framework with deep kernel for uncertainty quantification
13 May 2022
Che-Chia Chang
T. Zeng
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A hybrid data driven-physics constrained Gaussian process regression framework with deep kernel for uncertainty quantification"
6 / 6 papers shown
Title
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
75
356
0
09 Nov 2018
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
83
1,373
0
30 Sep 2017
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
215
10,646
0
15 Sep 2016
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
151
882
0
06 Nov 2015
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
51
1,178
0
02 Nov 2012
Linear Latent Force Models using Gaussian Processes
Mauricio A. Alvarez
D. Luengo
Neil D. Lawrence
39
124
0
13 Jul 2011
1