ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.06234
  4. Cited By
SIBILA: A novel interpretable ensemble of general-purpose machine
  learning models applied to medical contexts

SIBILA: A novel interpretable ensemble of general-purpose machine learning models applied to medical contexts

12 May 2022
A. Banegas-Luna
Horacio Pérez-Sánchez
ArXivPDFHTML

Papers citing "SIBILA: A novel interpretable ensemble of general-purpose machine learning models applied to medical contexts"

11 / 11 papers shown
Title
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
241
193
0
03 Feb 2022
Scientific Machine Learning Benchmarks
Scientific Machine Learning Benchmarks
Jeyan Thiyagalingam
Mallikarjun Shankar
Geoffrey C. Fox
Tony (Anthony) John Grenville Hey
47
114
0
25 Oct 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine
  Learning
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
98
66
0
23 Jun 2021
AutoML to Date and Beyond: Challenges and Opportunities
AutoML to Date and Beyond: Challenges and Opportunities
Shubhra (Santu) Karmaker
Md. Mahadi Hassan
Micah J. Smith
Lei Xu
Chengxiang Zhai
K. Veeramachaneni
100
230
0
21 Oct 2020
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
Esteban Real
Chen Liang
David R. So
Quoc V. Le
75
225
0
06 Mar 2020
FLAML: A Fast and Lightweight AutoML Library
FLAML: A Fast and Lightweight AutoML Library
Chi Wang
Qingyun Wu
Markus Weimer
Erkang Zhu
70
203
0
12 Nov 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual
  Explanations
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
106
1,020
0
19 May 2019
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,864
0
22 May 2017
Deep Learning for Computational Chemistry
Deep Learning for Computational Chemistry
Garrett B. Goh
Nathan Oken Hodas
Abhinav Vishnu
AI4CE
71
679
0
17 Jan 2017
Deep Learning in Bioinformatics
Deep Learning in Bioinformatics
Seonwoo Min
Byunghan Lee
Sungroh Yoon
AI4CE
3DV
60
1,360
0
21 Mar 2016
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
361
25,642
0
09 Jun 2011
1