Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.05057
Cited By
Sensible AI: Re-imagining Interpretability and Explainability using Sensemaking Theory
10 May 2022
Harmanpreet Kaur
Eytan Adar
Eric Gilbert
Cliff Lampe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sensible AI: Re-imagining Interpretability and Explainability using Sensemaking Theory"
29 / 29 papers shown
Title
What Do People Want to Know About Artificial Intelligence (AI)? The Importance of Answering End-User Questions to Explain Autonomous Vehicle (AV) Decisions
Somayeh Molaei
Lionel P. Robert
Nikola Banovic
26
0
0
09 May 2025
AI Chatbots for Mental Health: Values and Harms from Lived Experiences of Depression
Dong Whi Yoo
Jiayue Melissa Shi
Violeta J. Rodriguez
Koustuv Saha
AI4MH
54
0
0
26 Apr 2025
Knowledge-Augmented Explainable and Interpretable Learning for Anomaly Detection and Diagnosis
Martin Atzmueller
Tim Bohne
Patricia Windler
85
0
0
28 Nov 2024
Thoughtful Adoption of NLP for Civic Participation: Understanding Differences Among Policymakers
Jose A. Guridi
Cristobal Cheyre
Qian Yang
34
1
0
30 Oct 2024
ValueCompass: A Framework for Measuring Contextual Value Alignment Between Human and LLMs
Hua Shen
Tiffany Knearem
Reshmi Ghosh
Yu-Ju Yang
Tanushree Mitra
Yun Huang
Yun Huang
61
0
0
15 Sep 2024
HCC Is All You Need: Alignment-The Sensible Kind Anyway-Is Just Human-Centered Computing
Eric Gilbert
13
2
0
30 Apr 2024
Incremental XAI: Memorable Understanding of AI with Incremental Explanations
Jessica Y. Bo
Pan Hao
Brian Y Lim
CLL
39
6
0
10 Apr 2024
What Does Evaluation of Explainable Artificial Intelligence Actually Tell Us? A Case for Compositional and Contextual Validation of XAI Building Blocks
Kacper Sokol
Julia E. Vogt
37
11
0
19 Mar 2024
Farsight: Fostering Responsible AI Awareness During AI Application Prototyping
Zijie J. Wang
Chinmay Kulkarni
Lauren Wilcox
Michael Terry
Michael A. Madaio
40
43
0
23 Feb 2024
A Scoping Study of Evaluation Practices for Responsible AI Tools: Steps Towards Effectiveness Evaluations
G. Berman
Nitesh Goyal
Michael A. Madaio
ELM
45
20
0
30 Jan 2024
The Participatory Turn in AI Design: Theoretical Foundations and the Current State of Practice
Fernando Delgado
Stephen Yang
Michael A. Madaio
Qian Yang
76
100
0
02 Oct 2023
Applying Interdisciplinary Frameworks to Understand Algorithmic Decision-Making
Timothée Schmude
Laura M. Koesten
Torsten Moller
Sebastian Tschiatschek
38
1
0
26 May 2023
Explaining the ghosts: Feminist intersectional XAI and cartography as methods to account for invisible labour
Goda Klumbytė
Hannah Piehl
Claude Draude
15
1
0
05 May 2023
A Meta-heuristic Approach to Estimate and Explain Classifier Uncertainty
A. Houston
Georgina Cosma
23
1
0
20 Apr 2023
Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML
Hilde J. P. Weerts
Florian Pfisterer
Matthias Feurer
Katharina Eggensperger
Eddie Bergman
Noor H. Awad
Joaquin Vanschoren
Mykola Pechenizkiy
B. Bischl
Frank Hutter
FaML
38
18
0
15 Mar 2023
Who's Thinking? A Push for Human-Centered Evaluation of LLMs using the XAI Playbook
Teresa Datta
John P. Dickerson
34
10
0
10 Mar 2023
Explainable AI is Dead, Long Live Explainable AI! Hypothesis-driven decision support
Tim Miller
27
120
0
24 Feb 2023
Designerly Understanding: Information Needs for Model Transparency to Support Design Ideation for AI-Powered User Experience
Q. V. Liao
Hariharan Subramonyam
Jennifer Wang
Jennifer Wortman Vaughan
HAI
33
58
0
21 Feb 2023
On the Impact of Explanations on Understanding of Algorithmic Decision-Making
Timothée Schmude
Laura M. Koesten
Torsten Moller
Sebastian Tschiatschek
24
15
0
16 Feb 2023
A Systematic Literature Review of Human-Centered, Ethical, and Responsible AI
Mohammad Tahaei
Marios Constantinides
Daniele Quercia
Michael J. Muller
AI4TS
54
8
0
10 Feb 2023
Seamful XAI: Operationalizing Seamful Design in Explainable AI
Upol Ehsan
Q. V. Liao
Samir Passi
Mark O. Riedl
Hal Daumé
30
20
0
12 Nov 2022
On the Importance of Application-Grounded Experimental Design for Evaluating Explainable ML Methods
Kasun Amarasinghe
Kit T. Rodolfa
Sérgio Jesus
Valerie Chen
Vladimir Balayan
Pedro Saleiro
P. Bizarro
Ameet Talwalkar
Rayid Ghani
27
0
0
24 Jun 2022
Think About the Stakeholders First! Towards an Algorithmic Transparency Playbook for Regulatory Compliance
Andrew Bell
O. Nov
Julia Stoyanovich
27
26
0
10 Jun 2022
Explainability Is in the Mind of the Beholder: Establishing the Foundations of Explainable Artificial Intelligence
Kacper Sokol
Peter A. Flach
39
20
0
29 Dec 2021
From Human Explanation to Model Interpretability: A Framework Based on Weight of Evidence
David Alvarez-Melis
Harmanpreet Kaur
Hal Daumé
Hanna M. Wallach
Jennifer Wortman Vaughan
FAtt
51
27
0
27 Apr 2021
Trust in Data Science: Collaboration, Translation, and Accountability in Corporate Data Science Projects
Samir Passi
S. Jackson
171
108
0
09 Feb 2020
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
232
201
0
06 Jul 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,684
0
28 Feb 2017
1