ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.03150
  4. Cited By
Optimal recovery and uncertainty quantification for distributed Gaussian
  process regression

Optimal recovery and uncertainty quantification for distributed Gaussian process regression

6 May 2022
Amine Hadji
Tammo Hesselink
Botond Szabó
ArXivPDFHTML

Papers citing "Optimal recovery and uncertainty quantification for distributed Gaussian process regression"

2 / 2 papers shown
Title
Uncertainty quantification for sparse spectral variational
  approximations in Gaussian process regression
Uncertainty quantification for sparse spectral variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
25
5
0
21 Dec 2022
Contraction rates for sparse variational approximations in Gaussian
  process regression
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
52
17
0
22 Sep 2021
1