Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.02973
Cited By
Large Scale Transfer Learning for Differentially Private Image Classification
6 May 2022
Harsh Mehta
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Large Scale Transfer Learning for Differentially Private Image Classification"
20 / 20 papers shown
Title
PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance
Haichao Sha
Ruixuan Liu
Yi-xiao Liu
Hong Chen
57
1
0
06 Dec 2023
Selective Pre-training for Private Fine-tuning
Da Yu
Sivakanth Gopi
Janardhan Kulkarni
Zinan Lin
Saurabh Naik
Tomasz Religa
Jian Yin
Huishuai Zhang
45
19
0
23 May 2023
Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance
Xin Gu
Gautam Kamath
Zhiwei Steven Wu
36
12
0
02 Mar 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
40
39
0
14 Feb 2023
Exploring the Limits of Differentially Private Deep Learning with Group-wise Clipping
Jiyan He
Xuechen Li
Da Yu
Huishuai Zhang
Janardhan Kulkarni
Y. Lee
A. Backurs
Nenghai Yu
Jiang Bian
62
47
0
03 Dec 2022
Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe
Xiang Yue
Huseyin A. Inan
Xuechen Li
Girish Kumar
Julia McAnallen
Hoda Shajari
Huan Sun
David Levitan
Robert Sim
63
80
0
25 Oct 2022
Differentially Private Online-to-Batch for Smooth Losses
Qinzi Zhang
Hoang Tran
Ashok Cutkosky
FedML
54
5
0
12 Oct 2022
Fine-Tuning with Differential Privacy Necessitates an Additional Hyperparameter Search
Yannis Cattan
Christopher A. Choquette-Choo
Nicolas Papernot
Abhradeep Thakurta
33
21
0
05 Oct 2022
When Does Differentially Private Learning Not Suffer in High Dimensions?
Xuechen Li
Daogao Liu
Tatsunori Hashimoto
Huseyin A. Inan
Janardhan Kulkarni
Y. Lee
Abhradeep Thakurta
43
58
0
01 Jul 2022
Beyond Uniform Lipschitz Condition in Differentially Private Optimization
Rudrajit Das
Satyen Kale
Zheng Xu
Tong Zhang
Sujay Sanghavi
33
17
0
21 Jun 2022
Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
58
69
0
14 Jun 2022
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Zhiqi Bu
Jialin Mao
Shiyun Xu
141
49
0
21 May 2022
SCENIC: A JAX Library for Computer Vision Research and Beyond
Mostafa Dehghani
A. Gritsenko
Anurag Arnab
Matthias Minderer
Yi Tay
53
68
0
18 Oct 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
136
355
0
13 Oct 2021
Not all noise is accounted equally: How differentially private learning benefits from large sampling rates
Friedrich Dörmann
Osvald Frisk
L. Andersen
Christian Fischer Pedersen
FedML
66
25
0
12 Oct 2021
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
315
2,623
0
04 May 2021
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
226
513
0
11 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
312
1,852
0
14 Dec 2020
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
150
422
0
29 Nov 2018
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
318
2,908
0
15 Sep 2016
1