Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.02652
Cited By
Can collaborative learning be private, robust and scalable?
5 May 2022
Dmitrii Usynin
Helena Klause
Johannes C. Paetzold
Daniel Rueckert
Georgios Kaissis
FedML
MedIm
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Can collaborative learning be private, robust and scalable?"
4 / 4 papers shown
Title
Qu-ANTI-zation: Exploiting Quantization Artifacts for Achieving Adversarial Outcomes
Sanghyun Hong
Michael-Andrei Panaitescu-Liess
Yigitcan Kaya
Tudor Dumitras
MQ
60
13
0
26 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
168
350
0
25 Sep 2021
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,712
0
18 Mar 2020
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
174
764
0
28 Sep 2019
1