ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.02302
  4. Cited By
Machine Learning Operations (MLOps): Overview, Definition, and
  Architecture

Machine Learning Operations (MLOps): Overview, Definition, and Architecture

4 May 2022
Dominik Kreuzberger
Niklas Kühl
Sebastian Hirschl
    VLM
    AI4CE
ArXivPDFHTML

Papers citing "Machine Learning Operations (MLOps): Overview, Definition, and Architecture"

16 / 16 papers shown
Title
Securing RAG: A Risk Assessment and Mitigation Framework
Securing RAG: A Risk Assessment and Mitigation Framework
Lukas Ammann
Sara Ott
Christoph R. Landolt
Marco P. Lehmann
SILM
33
0
0
13 May 2025
Model Lake: a New Alternative for Machine Learning Models Management and Governance
Model Lake: a New Alternative for Machine Learning Models Management and Governance
Moncef Garouani
Franck Ravat
Nathalie Valles-Parlangeau
37
1
0
27 Mar 2025
On the Workflows and Smells of Leaderboard Operations (LBOps): An Exploratory Study of Foundation Model Leaderboards
On the Workflows and Smells of Leaderboard Operations (LBOps): An Exploratory Study of Foundation Model Leaderboards
Zhimin Zhao
A. A. Bangash
F. Côgo
Bram Adams
Ahmed E. Hassan
59
1
0
04 Jul 2024
Mapping the Potential of Explainable AI for Fairness Along the AI
  Lifecycle
Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle
Luca Deck
Astrid Schomacker
Timo Speith
Jakob Schöffer
Lena Kästner
Niklas Kühl
41
4
0
29 Apr 2024
Model Callers for Transforming Predictive and Generative AI Applications
Model Callers for Transforming Predictive and Generative AI Applications
Mukesh Dalal
26
0
0
17 Apr 2024
Continual Learning: Applications and the Road Forward
Continual Learning: Applications and the Road Forward
Eli Verwimp
Rahaf Aljundi
Shai Ben-David
Matthias Bethge
Andrea Cossu
...
J. Weijer
Bing Liu
Vincenzo Lomonaco
Tinne Tuytelaars
Gido M. van de Ven
CLL
43
44
0
20 Nov 2023
sQUlearn -- A Python Library for Quantum Machine Learning
sQUlearn -- A Python Library for Quantum Machine Learning
D. Kreplin
Moritz Willmann
Jan Schnabel
Frederic Rapp
Manuel Hagelüken
M. Roth
GP
30
9
0
15 Nov 2023
biquality-learn: a Python library for Biquality Learning
biquality-learn: a Python library for Biquality Learning
Pierre Nodet
V. Lemaire
A. Bondu
Antoine Cornuéjols
14
0
0
18 Aug 2023
CausalOps -- Towards an Industrial Lifecycle for Causal Probabilistic
  Graphical Models
CausalOps -- Towards an Industrial Lifecycle for Causal Probabilistic Graphical Models
R. Maier
A. Schlattl
Thomas Guess
J. Mottok
AI4CE
29
1
0
02 Aug 2023
Machine Learning-Assisted Pattern Recognition Algorithms for Estimating
  Ultimate Tensile Strength in Fused Deposition Modeled Polylactic Acid
  Specimens
Machine Learning-Assisted Pattern Recognition Algorithms for Estimating Ultimate Tensile Strength in Fused Deposition Modeled Polylactic Acid Specimens
Akshansh Mishra
V. Jatti
21
0
0
13 Jul 2023
ML-Based Teaching Systems: A Conceptual Framework
ML-Based Teaching Systems: A Conceptual Framework
Philipp Spitzer
Niklas Kühl
Daniel Heinz
G. Satzger
33
6
0
12 May 2023
End-User Development for Artificial Intelligence: A Systematic
  Literature Review
End-User Development for Artificial Intelligence: A Systematic Literature Review
Andrea Esposito
Miriana Calvano
Antonio Curci
Giuseppe Desolda
R. Lanzilotti
Claudia Lorusso
Antonio Piccinno
17
5
0
14 Apr 2023
Machine Learning with Requirements: a Manifesto
Machine Learning with Requirements: a Manifesto
Eleonora Giunchiglia
F. Imrie
M. Schaar
Thomas Lukasiewicz
AI4TS
OffRL
VLM
32
5
0
07 Apr 2023
Quality Assurance in MLOps Setting: An Industrial Perspective
Quality Assurance in MLOps Setting: An Industrial Perspective
Ayan Chatterjee
Bestoun S. Ahmed
Erik Hallin
Anton Engman
20
2
0
23 Nov 2022
Operationalizing Machine Learning: An Interview Study
Operationalizing Machine Learning: An Interview Study
Shreya Shankar
Rolando Garcia
J. M. Hellerstein
Aditya G. Parameswaran
71
51
0
16 Sep 2022
How to avoid machine learning pitfalls: a guide for academic researchers
How to avoid machine learning pitfalls: a guide for academic researchers
M. Lones
VLM
FaML
OnRL
62
77
0
05 Aug 2021
1