Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.01626
Cited By
Automated Learning of Interpretable Models with Quantified Uncertainty
12 April 2022
Geoffrey F. Bomarito
Patrick E. Leser
N. Strauss
K. Garbrecht
J. D. Hochhalter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automated Learning of Interpretable Models with Quantified Uncertainty"
10 / 10 papers shown
Title
Contemporary Symbolic Regression Methods and their Relative Performance
William La Cava
Patryk Orzechowski
Bogdan Burlacu
Fabrício Olivetti de Francca
M. Virgolin
Ying Jin
M. Kommenda
J. Moore
167
259
0
29 Jul 2021
SymbolicGPT: A Generative Transformer Model for Symbolic Regression
Mojtaba Valipour
Bowen You
Maysum Panju
A. Ghodsi
36
93
0
27 Jun 2021
Bayesian System ID: Optimal management of parameter, model, and measurement uncertainty
Nicholas Galioto
Alex Gorodetsky
53
32
0
04 Mar 2020
Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients
Brenden K. Petersen
Mikel Landajuela
T. Nathan Mundhenk
Claudio Santiago
Soo K. Kim
Joanne T. Kim
50
314
0
10 Dec 2019
AI Feynman: a Physics-Inspired Method for Symbolic Regression
S. Udrescu
Max Tegmark
148
869
0
27 May 2019
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead
Cynthia Rudin
ELM
FaML
50
219
0
26 Nov 2018
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Xia Hu
FaML
77
1,090
0
31 Jul 2018
Where are we now? A large benchmark study of recent symbolic regression methods
Patryk Orzechowski
William La Cava
J. Moore
35
160
0
25 Apr 2018
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison
Randal S. Olson
William La Cava
Patryk Orzechowski
Ryan J. Urbanowicz
J. Moore
361
378
0
01 Mar 2017
Overall Objective Priors
J. Berger
J. Bernardo
Dongchu Sun
57
118
0
10 Apr 2015
1