Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.01059
Cited By
Enhanced Physics-Informed Neural Networks with Augmented Lagrangian Relaxation Method (AL-PINNs)
29 April 2022
Hwijae Son
S. Cho
H. Hwang
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enhanced Physics-Informed Neural Networks with Augmented Lagrangian Relaxation Method (AL-PINNs)"
17 / 17 papers shown
Title
Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Youngsik Hwang
Dong-Young Lim
AI4CE
86
3
0
27 Sep 2024
Learning in Sinusoidal Spaces with Physics-Informed Neural Networks
Jian Cheng Wong
C. Ooi
Abhishek Gupta
Yew-Soon Ong
AI4CE
PINN
SSL
56
79
0
20 Sep 2021
Lagrangian dual framework for conservative neural network solutions of kinetic equations
H. Hwang
Hwijae Son
35
7
0
23 Jun 2021
Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions
Ameya Dilip Jagtap
Yeonjong Shin
Kenji Kawaguchi
George Karniadakis
ODL
72
134
0
20 May 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
95
516
0
09 Feb 2021
DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation
Jungeun Kim
Kookjin Lee
Dongeun Lee
Sheo Yon Jin
Noseong Park
PINN
AI4CE
50
81
0
04 Dec 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
72
458
0
07 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
130
909
0
28 Jul 2020
Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks
Colby Wight
Jia Zhao
72
224
0
09 Jul 2020
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
116
2,418
0
18 Jun 2020
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
131
2,548
0
17 Jun 2020
Lagrangian Duality for Constrained Deep Learning
Ferdinando Fioretto
Pascal Van Hentenryck
Terrence W.K. Mak
Cuong Tran
Federico Baldo
M. Lombardi
PINN
47
83
0
26 Jan 2020
Trend to Equilibrium for the Kinetic Fokker-Planck Equation via the Neural Network Approach
H. Hwang
Jin Woo Jang
Hyeontae Jo
Jae Yong Lee
365
36
0
22 Nov 2019
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
97
1,528
0
10 Jul 2019
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
119
1,387
0
30 Sep 2017
Imposing Hard Constraints on Deep Networks: Promises and Limitations
Pablo Márquez-Neila
Mathieu Salzmann
Pascal Fua
PINN
UQCV
143
140
0
07 Jun 2017
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
323
18,613
0
06 Feb 2015
1