Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.00263
Cited By
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound
30 April 2022
Claudio Ferrari
Mark Niklas Muller
Nikola Jovanović
Martin Vechev
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound"
50 / 63 papers shown
Title
Adaptive Branch-and-Bound Tree Exploration for Neural Network Verification
Kota Fukuda
Guanqin Zhang
Zhenya Zhang
Yulei Sui
Jianjun Zhao
45
0
0
02 May 2025
Towards Robust LLMs: an Adversarial Robustness Measurement Framework
Natan Levy
Adiel Ashrov
Guy Katz
AAML
25
0
0
24 Apr 2025
BaB-ND: Long-Horizon Motion Planning with Branch-and-Bound and Neural Dynamics
Keyi Shen
Jiangwei Yu
Huan Zhang
Yunzhu Li
Yunzhu Li
96
1
0
12 Dec 2024
Testing Neural Network Verifiers: A Soundness Benchmark with Hidden Counterexamples
Xingjian Zhou
Hongji Xu
Andy Xu
Zhouxing Shi
Cho-Jui Hsieh
Huan Zhang
AAML
80
0
0
04 Dec 2024
Specification Generation for Neural Networks in Systems
Isha Chaudhary
Shuyi Lin
Cheng Tan
Gagandeep Singh
75
0
0
04 Dec 2024
Certified Training with Branch-and-Bound: A Case Study on Lyapunov-stable Neural Control
Zhouxing Shi
Cho-Jui Hsieh
Huan Zhang
75
0
0
27 Nov 2024
Tightening convex relaxations of trained neural networks: a unified approach for convex and S-shaped activations
Pablo Carrasco
Gonzalo Muñoz
59
2
0
30 Oct 2024
SEEV: Synthesis with Efficient Exact Verification for ReLU Neural Barrier Functions
Hongchao Zhang
Zhizhen Qin
Sicun Gao
Andrew Clark
32
1
0
27 Oct 2024
Make Interval Bound Propagation great again
Patryk Krukowski
Daniel Wilczak
Jacek Tabor
Anna Bielawska
Przemysław Spurek
OOD
AAML
39
0
0
04 Oct 2024
On Using Certified Training towards Empirical Robustness
Alessandro De Palma
Serge Durand
Zakaria Chihani
François Terrier
Caterina Urban
OOD
AAML
38
1
0
02 Oct 2024
Training Safe Neural Networks with Global SDP Bounds
Roman Soletskyi
David "davidad" Dalrymple
AAML
26
0
0
15 Sep 2024
Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation
Ben Batten
Yang Zheng
Alessandro De Palma
Panagiotis Kouvaros
A. Lomuscio
AAML
38
0
0
23 Aug 2024
PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks
Xiyue Zhang
Benjie Wang
Marta Kwiatkowska
Huan Zhang
AAML
38
2
0
17 Aug 2024
ModelVerification.jl: a Comprehensive Toolbox for Formally Verifying Deep Neural Networks
Tianhao Wei
Luca Marzari
Kai S. Yun
Hanjiang Hu
Peizhi Niu
Xusheng Luo
Changliu Liu
45
0
0
30 Jun 2024
FullCert: Deterministic End-to-End Certification for Training and Inference of Neural Networks
Tobias Lorenz
Marta Kwiatkowska
Mario Fritz
AAML
23
0
0
17 Jun 2024
CTBENCH: A Library and Benchmark for Certified Training
Yuhao Mao
Stefan Balauca
Martin Vechev
OOD
47
5
0
07 Jun 2024
Towards General Robustness Verification of MaxPool-based Convolutional Neural Networks via Tightening Linear Approximation
Yuan Xiao
Shiqing Ma
Juan Zhai
Chunrong Fang
Jinyuan Jia
Zhenyu Chen
AAML
51
1
0
02 Jun 2024
Compact Optimality Verification for Optimization Proxies
Wenbo Chen
Haoruo Zhao
Mathieu Tanneau
Pascal Van Hentenryck
38
0
0
31 May 2024
Neural Network Verification with Branch-and-Bound for General Nonlinearities
Zhouxing Shi
Qirui Jin
Zico Kolter
Suman Jana
Cho-Jui Hsieh
Huan Zhang
48
11
0
31 May 2024
Probabilistic Verification of Neural Networks using Branch and Bound
David Boetius
Stefan Leue
Tobias Sutter
42
0
0
27 May 2024
Relational DNN Verification With Cross Executional Bound Refinement
Debangshu Banerjee
Gagandeep Singh
AAML
29
5
0
16 May 2024
Formal Verification of Graph Convolutional Networks with Uncertain Node Features and Uncertain Graph Structure
Tobias Ladner
Michael Eichelbeck
Matthias Althoff
GNN
63
0
0
23 Apr 2024
DeepCDCL: An CDCL-based Neural Network Verification Framework
Zongxin Liu
Pengfei Yang
Lijun Zhang
Xiaowei Huang
30
3
0
12 Mar 2024
Set-Based Training for Neural Network Verification
Lukas Koller
Tobias Ladner
Matthias Althoff
AAML
51
1
0
26 Jan 2024
Marabou 2.0: A Versatile Formal Analyzer of Neural Networks
Haoze Wu
Omri Isac
Aleksandar Zeljić
Teruhiro Tagomori
M. Daggitt
...
Min Wu
Min Zhang
Ekaterina Komendantskaya
Guy Katz
Clark W. Barrett
47
30
0
25 Jan 2024
Comparing Differentiable Logics for Learning Systems: A Research Preview
Thomas Flinkow
Ba Pearlmutter
Rosemary Monahan
17
2
0
16 Nov 2023
Exact Verification of ReLU Neural Control Barrier Functions
Hongchao Zhang
Junlin Wu
Yevgeniy Vorobeychik
Andrew Clark
AAML
43
12
0
13 Oct 2023
Expediting Neural Network Verification via Network Reduction
Yuyi Zhong
Ruiwei Wang
Siau-Cheng Khoo
AAML
24
2
0
07 Aug 2023
A DPLL(T) Framework for Verifying Deep Neural Networks
Hai V. Duong
Thanh-Dat Nguyen
Matthew B. Dwyer
25
8
0
17 Jul 2023
Towards a Certified Proof Checker for Deep Neural Network Verification
Remi Desmartin
Omri Isac
Grant Passmore
Kathrin Stark
Guy Katz
Ekaterina Komendantskaya
18
6
0
12 Jul 2023
Verifying Global Neural Network Specifications using Hyperproperties
David Boetius
Stefan Leue
AAML
20
0
0
21 Jun 2023
GPU-Accelerated Verification of Machine Learning Models for Power Systems
Samuel C. Chevalier
Ilgiz Murzakhanov
Spyros Chatzivasileiadis
29
4
0
18 Jun 2023
Understanding Certified Training with Interval Bound Propagation
Yuhao Mao
Mark Niklas Muller
Marc Fischer
Martin Vechev
AAML
54
15
0
17 Jun 2023
Precise and Generalized Robustness Certification for Neural Networks
Yuanyuan Yuan
Shuai Wang
Z. Su
AAML
51
2
0
11 Jun 2023
From Robustness to Explainability and Back Again
Xuanxiang Huang
Sasha Rubin
34
10
0
05 Jun 2023
Expressive Losses for Verified Robustness via Convex Combinations
Alessandro De Palma
Rudy Bunel
Krishnamurthy Dvijotham
M. P. Kumar
Robert Stanforth
A. Lomuscio
AAML
35
12
0
23 May 2023
DeepBern-Nets: Taming the Complexity of Certifying Neural Networks using Bernstein Polynomial Activations and Precise Bound Propagation
Haitham Khedr
Yasser Shoukry
47
5
0
22 May 2023
Efficient Error Certification for Physics-Informed Neural Networks
Francisco Eiras
Adel Bibi
Rudy Bunel
Krishnamurthy Dvijotham
Philip Torr
M. P. Kumar
PINN
26
1
0
17 May 2023
TAPS: Connecting Certified and Adversarial Training
Yuhao Mao
Mark Niklas Muller
Marc Fischer
Martin Vechev
AAML
31
10
0
08 May 2023
Provable Preimage Under-Approximation for Neural Networks (Full Version)
Xiyue Zhang
Benjie Wang
Marta Z. Kwiatkowska
AAML
36
7
0
05 May 2023
Fully Automatic Neural Network Reduction for Formal Verification
Tobias Ladner
Matthias Althoff
AAML
34
3
0
03 May 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
32
0
29 Apr 2023
Architecture-Preserving Provable Repair of Deep Neural Networks
Zhe Tao
Stephanie Nawas
Jacqueline Mitchell
Aditya V. Thakur
AAML
34
10
0
07 Apr 2023
Incremental Verification of Neural Networks
Shubham Ugare
Debangshu Banerjee
Sasa Misailovic
Gagandeep Singh
38
11
0
04 Apr 2023
CGDTest: A Constrained Gradient Descent Algorithm for Testing Neural Networks
Vineel Nagisetty
Laura Graves
Guanting Pan
Piyush Jha
Vijay Ganesh
AAML
OOD
34
1
0
04 Apr 2023
Efficient Certified Training and Robustness Verification of Neural ODEs
Mustafa Zeqiri
Mark Niklas Muller
Marc Fischer
Martin Vechev
AAML
43
2
0
09 Mar 2023
Provably Bounding Neural Network Preimages
Suhas Kotha
Christopher Brix
Zico Kolter
Krishnamurthy Dvijotham
Huan Zhang
AAML
38
12
0
02 Feb 2023
Interpreting Robustness Proofs of Deep Neural Networks
Debangshu Banerjee
Avaljot Singh
Gagandeep Singh
AAML
29
5
0
31 Jan 2023
A Robust Optimisation Perspective on Counterexample-Guided Repair of Neural Networks
David Boetius
Stefan Leue
Tobias Sutter
25
4
0
26 Jan 2023
First Three Years of the International Verification of Neural Networks Competition (VNN-COMP)
Christopher Brix
Mark Niklas Muller
Stanley Bak
Taylor T. Johnson
Changliu Liu
NAI
35
66
0
14 Jan 2023
1
2
Next