Communities
Connect sessions
AI calendar
Organizations
Contact Sales
Search
Open menu
Home
Papers
2205.00186
Cited By
v1
v2 (latest)
Reliable Label Correction is a Good Booster When Learning with Extremely Noisy Labels
30 April 2022
Kaidi Wang
Xiang Peng
Shuo Yang
Jianfei Yang
Zheng Hua Zhu
Xinchao Wang
Yang You
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Reliable Label Correction is a Good Booster When Learning with Extremely Noisy Labels"
5 / 5 papers shown
Title
Learning from Different Samples: A Source-free Framework for Semi-supervised Domain Adaptation
Xinyang Huang
Chuang Zhu
Bowen Zhang
Shanghang Zhang
100
2
0
11 Nov 2024
BiCro: Noisy Correspondence Rectification for Multi-modality Data via Bi-directional Cross-modal Similarity Consistency
Shuo Yang
Zhaopan Xu
Kai Wang
Yang You
Huanjin Yao
Tongliang Liu
Min Xu
146
41
0
22 Mar 2023
Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of Black-Box Predictors
Jianfei Yang
Xiangyu Peng
Kaidi Wang
Zheng Hua Zhu
Jiashi Feng
Lihua Xie
Yang You
139
33
0
28 May 2022
Dataset Pruning: Reducing Training Data by Examining Generalization Influence
Shuo Yang
Zeke Xie
Hanyu Peng
Minjing Xu
Mingming Sun
P. Li
DD
297
131
0
19 May 2022
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network
Shuo Yang
Erkun Yang
Bo Han
Yang Liu
Min Xu
Gang Niu
Tongliang Liu
NoLa
BDL
131
46
0
27 May 2021
1