ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.00186
  4. Cited By
Reliable Label Correction is a Good Booster When Learning with Extremely
  Noisy Labels
v1v2 (latest)

Reliable Label Correction is a Good Booster When Learning with Extremely Noisy Labels

30 April 2022
Kaidi Wang
Xiang Peng
Shuo Yang
Jianfei Yang
Zheng Hua Zhu
Xinchao Wang
Yang You
    NoLa
ArXiv (abs)PDFHTML

Papers citing "Reliable Label Correction is a Good Booster When Learning with Extremely Noisy Labels"

3 / 3 papers shown
Title
BiCro: Noisy Correspondence Rectification for Multi-modality Data via
  Bi-directional Cross-modal Similarity Consistency
BiCro: Noisy Correspondence Rectification for Multi-modality Data via Bi-directional Cross-modal Similarity Consistency
Shuo Yang
Zhaopan Xu
Kai Wang
Yang You
Huanjin Yao
Tongliang Liu
Min Xu
118
30
0
22 Mar 2023
Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of
  Black-Box Predictors
Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of Black-Box Predictors
Jianfei Yang
Xiangyu Peng
Kaidi Wang
Zheng Hua Zhu
Jiashi Feng
Lihua Xie
Yang You
103
29
0
28 May 2022
Dataset Pruning: Reducing Training Data by Examining Generalization
  Influence
Dataset Pruning: Reducing Training Data by Examining Generalization Influence
Shuo Yang
Zeke Xie
Hanyu Peng
Minjing Xu
Mingming Sun
P. Li
DD
258
114
0
19 May 2022
1