ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.00048
  4. Cited By
Joint Multisided Exposure Fairness for Recommendation

Joint Multisided Exposure Fairness for Recommendation

29 April 2022
Haolun Wu
Bhaskar Mitra
Chen Ma
Fernando Diaz
Xue Liu
    FaML
ArXivPDFHTML

Papers citing "Joint Multisided Exposure Fairness for Recommendation"

7 / 7 papers shown
Title
Dissecting Submission Limit in Desk-Rejections: A Mathematical Analysis of Fairness in AI Conference Policies
Dissecting Submission Limit in Desk-Rejections: A Mathematical Analysis of Fairness in AI Conference Policies
Yuefan Cao
Xiaoyu Li
Yingyu Liang
Zhizhou Sha
Zhenmei Shi
Zhao Song
Jiahao Zhang
100
7
0
02 Feb 2025
Measuring Bias in a Ranked List using Term-based Representations
Measuring Bias in a Ranked List using Term-based Representations
Amin Abolghasemi
Leif Azzopardi
Arian Askari
Maarten de Rijke
Suzan Verberne
42
6
0
09 Mar 2024
Inference-time Stochastic Ranking with Risk Control
Inference-time Stochastic Ranking with Risk Control
Ruocheng Guo
Jean-François Ton
Yang Liu
Hang Li
43
2
0
12 Jun 2023
Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm
  Reduction
Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm Reduction
Renee Shelby
Shalaleh Rismani
Kathryn Henne
AJung Moon
Negar Rostamzadeh
...
N'Mah Yilla-Akbari
Jess Gallegos
A. Smart
Emilio Garcia
Gurleen Virk
47
188
0
11 Oct 2022
Ethical and Social Considerations in Automatic Expert Identification and
  People Recommendation in Organizational Knowledge Management Systems
Ethical and Social Considerations in Automatic Expert Identification and People Recommendation in Organizational Knowledge Management Systems
Ida Larsen-Ledet
Bhaskar Mitra
Siân E. Lindley
18
1
0
08 Sep 2022
Matching Consumer Fairness Objectives & Strategies for RecSys
Matching Consumer Fairness Objectives & Strategies for RecSys
Michael D. Ekstrand
M. S. Pera
FaML
32
3
0
06 Sep 2022
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
349
4,237
0
23 Aug 2019
1