ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.13170
  4. Cited By
AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias
  Estimation

AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation

27 April 2022
Farshid Varno
Marzie Saghayi
Laya Rafiee
Sharut Gupta
Stan Matwin
Mohammad Havaei
    FedML
ArXivPDFHTML

Papers citing "AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation"

31 / 31 papers shown
Title
The Key of Parameter Skew in Federated Learning
The Key of Parameter Skew in Federated Learning
Sifan Wang
Junfeng Liao
Ye Yuan
Riquan Zhang
FedML
53
0
0
21 Aug 2024
Federated Learning Based on Dynamic Regularization
Federated Learning Based on Dynamic Regularization
D. A. E. Acar
Yue Zhao
Ramon Matas Navarro
Matthew Mattina
P. Whatmough
Venkatesh Saligrama
FedML
37
762
0
08 Nov 2021
Robbing the Fed: Directly Obtaining Private Data in Federated Learning
  with Modified Models
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
103
146
0
25 Oct 2021
Data-Free Knowledge Distillation for Heterogeneous Federated Learning
Data-Free Knowledge Distillation for Heterogeneous Federated Learning
Zhuangdi Zhu
Junyuan Hong
Jiayu Zhou
FedML
38
645
0
20 May 2021
A Variance Controlled Stochastic Method with Biased Estimation for
  Faster Non-convex Optimization
A Variance Controlled Stochastic Method with Biased Estimation for Faster Non-convex Optimization
Jia Bi
S. Gunn
16
2
0
19 Feb 2021
Bias-Variance Reduced Local SGD for Less Heterogeneous Federated
  Learning
Bias-Variance Reduced Local SGD for Less Heterogeneous Federated Learning
Tomoya Murata
Taiji Suzuki
FedML
30
50
0
05 Feb 2021
On the Convergence of SGD with Biased Gradients
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
29
85
0
31 Jul 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated
  Optimization
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
35
1,314
0
15 Jul 2020
Ensemble Distillation for Robust Model Fusion in Federated Learning
Ensemble Distillation for Robust Model Fusion in Federated Learning
Tao R. Lin
Lingjing Kong
Sebastian U. Stich
Martin Jaggi
FedML
45
1,026
0
12 Jun 2020
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
  to Non-IID Data
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data
Xinwei Zhang
Mingyi Hong
S. Dhople
W. Yin
Yang Liu
FedML
37
229
0
22 May 2020
FedSplit: An algorithmic framework for fast federated optimization
FedSplit: An algorithmic framework for fast federated optimization
Reese Pathak
Martin J. Wainwright
FedML
122
183
0
11 May 2020
FedDANE: A Federated Newton-Type Method
FedDANE: A Federated Newton-Type Method
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
94
156
0
07 Jan 2020
Variance Reduced Local SGD with Lower Communication Complexity
Variance Reduced Local SGD with Lower Communication Complexity
Xian-Feng Liang
Shuheng Shen
Jingchang Liu
Zhen Pan
Enhong Chen
Yifei Cheng
FedML
56
152
0
30 Dec 2019
FedMD: Heterogenous Federated Learning via Model Distillation
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
67
845
0
08 Oct 2019
SlowMo: Improving Communication-Efficient Distributed SGD with Slow
  Momentum
SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum
Jianyu Wang
Vinayak Tantia
Nicolas Ballas
Michael G. Rabbat
39
201
0
01 Oct 2019
Measuring the Effects of Non-Identical Data Distribution for Federated
  Visual Classification
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
99
1,128
0
13 Sep 2019
Deep Leakage from Gradients
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
52
2,185
0
21 Jun 2019
On the Linear Speedup Analysis of Communication Efficient Momentum SGD
  for Distributed Non-Convex Optimization
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization
Hao Yu
Rong Jin
Sen Yang
FedML
56
381
0
09 May 2019
Federated Optimization in Heterogeneous Networks
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
76
5,105
0
14 Dec 2018
Federated Learning with Non-IID Data
Federated Learning with Non-IID Data
Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
FedML
132
2,547
0
02 Jun 2018
Local SGD Converges Fast and Communicates Little
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
148
1,056
0
24 May 2018
SARAH: A Novel Method for Machine Learning Problems Using Stochastic
  Recursive Gradient
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
126
601
0
01 Mar 2017
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
89
1,886
0
08 Oct 2016
AIDE: Fast and Communication Efficient Distributed Optimization
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
33
151
0
24 Aug 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
196
17,235
0
17 Feb 2016
Stop Wasting My Gradients: Practical SVRG
Stop Wasting My Gradients: Practical SVRG
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark Schmidt
Jakub Konecný
Scott Sallinen
41
134
0
05 Nov 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
85
273
0
16 Apr 2015
mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal
  Setting
mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
49
22
0
17 Oct 2014
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
135
738
0
19 Mar 2014
Communication Efficient Distributed Optimization using an Approximate
  Newton-type Method
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
48
554
0
30 Dec 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss
  Minimization
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
78
1,031
0
10 Sep 2012
1