Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.13170
Cited By
AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation
27 April 2022
Farshid Varno
Marzie Saghayi
Laya Rafiee
Sharut Gupta
Stan Matwin
Mohammad Havaei
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation"
31 / 31 papers shown
Title
The Key of Parameter Skew in Federated Learning
Sifan Wang
Junfeng Liao
Ye Yuan
Riquan Zhang
FedML
53
0
0
21 Aug 2024
Federated Learning Based on Dynamic Regularization
D. A. E. Acar
Yue Zhao
Ramon Matas Navarro
Matthew Mattina
P. Whatmough
Venkatesh Saligrama
FedML
37
762
0
08 Nov 2021
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
Liam H. Fowl
Jonas Geiping
W. Czaja
Micah Goldblum
Tom Goldstein
FedML
103
146
0
25 Oct 2021
Data-Free Knowledge Distillation for Heterogeneous Federated Learning
Zhuangdi Zhu
Junyuan Hong
Jiayu Zhou
FedML
38
645
0
20 May 2021
A Variance Controlled Stochastic Method with Biased Estimation for Faster Non-convex Optimization
Jia Bi
S. Gunn
16
2
0
19 Feb 2021
Bias-Variance Reduced Local SGD for Less Heterogeneous Federated Learning
Tomoya Murata
Taiji Suzuki
FedML
30
50
0
05 Feb 2021
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
29
85
0
31 Jul 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
35
1,314
0
15 Jul 2020
Ensemble Distillation for Robust Model Fusion in Federated Learning
Tao R. Lin
Lingjing Kong
Sebastian U. Stich
Martin Jaggi
FedML
45
1,026
0
12 Jun 2020
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data
Xinwei Zhang
Mingyi Hong
S. Dhople
W. Yin
Yang Liu
FedML
37
229
0
22 May 2020
FedSplit: An algorithmic framework for fast federated optimization
Reese Pathak
Martin J. Wainwright
FedML
122
183
0
11 May 2020
FedDANE: A Federated Newton-Type Method
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
94
156
0
07 Jan 2020
Variance Reduced Local SGD with Lower Communication Complexity
Xian-Feng Liang
Shuheng Shen
Jingchang Liu
Zhen Pan
Enhong Chen
Yifei Cheng
FedML
56
152
0
30 Dec 2019
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
67
845
0
08 Oct 2019
SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum
Jianyu Wang
Vinayak Tantia
Nicolas Ballas
Michael G. Rabbat
39
201
0
01 Oct 2019
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
99
1,128
0
13 Sep 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
52
2,185
0
21 Jun 2019
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization
Hao Yu
Rong Jin
Sen Yang
FedML
56
381
0
09 May 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
76
5,105
0
14 Dec 2018
Federated Learning with Non-IID Data
Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
FedML
132
2,547
0
02 Jun 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
148
1,056
0
24 May 2018
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
126
601
0
01 Mar 2017
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
89
1,886
0
08 Oct 2016
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
33
151
0
24 Aug 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
196
17,235
0
17 Feb 2016
Stop Wasting My Gradients: Practical SVRG
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark Schmidt
Jakub Konecný
Scott Sallinen
41
134
0
05 Nov 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
85
273
0
16 Apr 2015
mS2GD: Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
49
22
0
17 Oct 2014
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
135
738
0
19 Mar 2014
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
48
554
0
30 Dec 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
78
1,031
0
10 Sep 2012
1