Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.12735
Cited By
Uncertainty Quantification for nonparametric regression using Empirical Bayesian neural networks
27 April 2022
Stefan Franssen
Botond Szabó
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty Quantification for nonparametric regression using Empirical Bayesian neural networks"
9 / 9 papers shown
Title
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
213
1,146
0
07 Jul 2021
Statistical guarantees for Bayesian uncertainty quantification in non-linear inverse problems with Gaussian process priors
F. Monard
Richard Nickl
G. Paternain
39
35
0
31 Jul 2020
Uncertainty Quantification for Sparse Deep Learning
Yuexi Wang
Veronika Rockova
BDL
UQCV
67
31
0
26 Feb 2020
Posterior Concentration for Sparse Deep Learning
Nicholas G. Polson
Veronika Rockova
UQCV
BDL
170
88
0
24 Mar 2018
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
212
810
0
22 Aug 2017
Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review
T. Poggio
H. Mhaskar
Lorenzo Rosasco
Brando Miranda
Q. Liao
97
578
0
02 Nov 2016
Supremum Norm Posterior Contraction and Credible Sets for Nonparametric Multivariate Regression
W. Yoo
S. Ghosal
64
86
0
25 Nov 2014
Frequentist coverage of adaptive nonparametric Bayesian credible sets
Botond Szabó
Van der Vaart
V. Zanten
77
159
0
16 Oct 2013
On the Bernstein-von Mises phenomenon for nonparametric Bayes procedures
I. Castillo
Richard Nickl
79
130
0
09 Oct 2013
1