ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.12471
  4. Cited By
Coarse-to-fine Q-attention with Tree Expansion

Coarse-to-fine Q-attention with Tree Expansion

26 April 2022
Stephen James
Pieter Abbeel
ArXivPDFHTML

Papers citing "Coarse-to-fine Q-attention with Tree Expansion"

9 / 9 papers shown
Title
BiGym: A Demo-Driven Mobile Bi-Manual Manipulation Benchmark
BiGym: A Demo-Driven Mobile Bi-Manual Manipulation Benchmark
Nikita Chernyadev
Nicholas Backshall
Xiao Ma
Yunfan Lu
Younggyo Seo
Stephen James
22
11
0
10 Jul 2024
PerAct2: Benchmarking and Learning for Robotic Bimanual Manipulation
  Tasks
PerAct2: Benchmarking and Learning for Robotic Bimanual Manipulation Tasks
Markus Grotz
Mohit Shridhar
Tamim Asfour
Dieter Fox
31
10
0
29 Jun 2024
Redundancy-aware Action Spaces for Robot Learning
Redundancy-aware Action Spaces for Robot Learning
Pietro Mazzaglia
Nicholas Backshall
Xiao Ma
Stephen James
37
2
0
06 Jun 2024
Hierarchical Diffusion Policy for Kinematics-Aware Multi-Task Robotic
  Manipulation
Hierarchical Diffusion Policy for Kinematics-Aware Multi-Task Robotic Manipulation
Xiao Ma
Sumit Patidar
Iain Haughton
Stephen James
43
49
0
06 Mar 2024
Behavior Retrieval: Few-Shot Imitation Learning by Querying Unlabeled
  Datasets
Behavior Retrieval: Few-Shot Imitation Learning by Querying Unlabeled Datasets
Maximilian Du
Suraj Nair
Dorsa Sadigh
Chelsea Finn
OffRL
24
32
0
18 Apr 2023
Multi-View Masked World Models for Visual Robotic Manipulation
Multi-View Masked World Models for Visual Robotic Manipulation
Younggyo Seo
Junsup Kim
Stephen James
Kimin Lee
Jinwoo Shin
Pieter Abbeel
VGen
25
55
0
05 Feb 2023
Masked World Models for Visual Control
Masked World Models for Visual Control
Younggyo Seo
Danijar Hafner
Hao Liu
Fangchen Liu
Stephen James
Kimin Lee
Pieter Abbeel
OffRL
93
146
0
28 Jun 2022
On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning
On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning
Mandi Zhao
Pieter Abbeel
Stephen James
OffRL
28
33
0
07 Jun 2022
Hierarchical Policy for Non-prehensile Multi-object Rearrangement with
  Deep Reinforcement Learning and Monte Carlo Tree Search
Hierarchical Policy for Non-prehensile Multi-object Rearrangement with Deep Reinforcement Learning and Monte Carlo Tree Search
Fan Bai
Fei Meng
Jianbang Liu
Jiankun Wang
Max Q.-H. Meng
21
6
0
18 Sep 2021
1