ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.12430
  4. Cited By
Federated Progressive Sparsification (Purge, Merge, Tune)+

Federated Progressive Sparsification (Purge, Merge, Tune)+

26 April 2022
Dimitris Stripelis
Umang Gupta
Greg Ver Steeg
J. Ambite
    FedML
ArXivPDFHTML

Papers citing "Federated Progressive Sparsification (Purge, Merge, Tune)+"

10 / 10 papers shown
Title
Federated LoRA with Sparse Communication
Federated LoRA with Sparse Communication
Kevin Kuo
Arian Raje
Kousik Rajesh
Virginia Smith
38
7
0
07 Jun 2024
Communication-Efficient Federated Learning through Adaptive Weight
  Clustering and Server-Side Distillation
Communication-Efficient Federated Learning through Adaptive Weight Clustering and Server-Side Distillation
Vasileios Tsouvalas
Aaqib Saeed
T. Ozcelebi
N. Meratnia
FedML
39
6
0
25 Jan 2024
FedCode: Communication-Efficient Federated Learning via Transferring
  Codebooks
FedCode: Communication-Efficient Federated Learning via Transferring Codebooks
Saeed Khalilian Gourtani
Vasileios Tsouvalas
T. Ozcelebi
N. Meratnia
FedML
28
5
0
15 Nov 2023
Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging
Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging
Max Zimmer
Christoph Spiegel
Sebastian Pokutta
MoMe
41
14
0
29 Jun 2023
Towards Sparsified Federated Neuroimaging Models via Weight Pruning
Towards Sparsified Federated Neuroimaging Models via Weight Pruning
Dimitris Stripelis
Umang Gupta
Nikhil J. Dhinagar
Greg Ver Steeg
Paul M. Thompson
J. Ambite
FedML
19
0
0
24 Aug 2022
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
411
0
14 Jul 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity
  and Sparse Gradients
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,707
0
18 Mar 2020
FedPAQ: A Communication-Efficient Federated Learning Method with
  Periodic Averaging and Quantization
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
174
760
0
28 Sep 2019
1