ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.12159
  4. Cited By
Coefficient Mutation in the Gene-pool Optimal Mixing Evolutionary
  Algorithm for Symbolic Regression

Coefficient Mutation in the Gene-pool Optimal Mixing Evolutionary Algorithm for Symbolic Regression

26 April 2022
M. Virgolin
Peter A. N. Bosman
ArXiv (abs)PDFHTML

Papers citing "Coefficient Mutation in the Gene-pool Optimal Mixing Evolutionary Algorithm for Symbolic Regression"

5 / 5 papers shown
Title
Contemporary Symbolic Regression Methods and their Relative Performance
Contemporary Symbolic Regression Methods and their Relative Performance
William La Cava
Patryk Orzechowski
Bogdan Burlacu
Fabrício Olivetti de Francca
M. Virgolin
Ying Jin
M. Kommenda
J. Moore
195
262
0
29 Jul 2021
Neural Symbolic Regression that Scales
Neural Symbolic Regression that Scales
Luca Biggio
Tommaso Bendinelli
Alexander Neitz
Aurelien Lucchi
Giambattista Parascandolo
91
180
0
11 Jun 2021
AI Feynman: a Physics-Inspired Method for Symbolic Regression
AI Feynman: a Physics-Inspired Method for Symbolic Regression
S. Udrescu
Max Tegmark
163
882
0
27 May 2019
Interpretable Policies for Reinforcement Learning by Genetic Programming
Interpretable Policies for Reinforcement Learning by Genetic Programming
D. Hein
Steffen Udluft
Thomas Runkler
OffRL
61
135
0
12 Dec 2017
Differentiable Genetic Programming
Differentiable Genetic Programming
Dario Izzo
F. Biscani
Alessio Mereta
37
43
0
15 Nov 2016
1