ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.11038
  4. Cited By
Dimension free non-asymptotic bounds on the accuracy of high dimensional
  Laplace approximation

Dimension free non-asymptotic bounds on the accuracy of high dimensional Laplace approximation

23 April 2022
V. Spokoiny
ArXivPDFHTML

Papers citing "Dimension free non-asymptotic bounds on the accuracy of high dimensional Laplace approximation"

15 / 15 papers shown
Title
Gradient-free optimization via integration
Gradient-free optimization via integration
Christophe Andrieu
N. Chopin
Ettore Fincato
Mathieu Gerber
15
0
0
01 Aug 2024
Coding schemes in neural networks learning classification tasks
Coding schemes in neural networks learning classification tasks
Alexander van Meegen
H. Sompolinsky
44
6
0
24 Jun 2024
The Laplace asymptotic expansion in high dimensions
The Laplace asymptotic expansion in high dimensions
Anya Katsevich
36
2
0
18 Jun 2024
Dimension-free Structured Covariance Estimation
Dimension-free Structured Covariance Estimation
Nikita Puchkin
Maxim Rakhuba
19
1
0
15 Feb 2024
Improved dimension dependence in the Bernstein von Mises Theorem via a
  new Laplace approximation bound
Improved dimension dependence in the Bernstein von Mises Theorem via a new Laplace approximation bound
A. Katsevich
36
4
0
14 Aug 2023
Tight Bounds on the Laplace Approximation Accuracy in High Dimensions
A. Katsevich
27
5
0
28 May 2023
Towards Understanding the Dynamics of Gaussian-Stein Variational
  Gradient Descent
Towards Understanding the Dynamics of Gaussian-Stein Variational Gradient Descent
Tianle Liu
Promit Ghosal
Krishnakumar Balasubramanian
Natesh S. Pillai
38
9
0
23 May 2023
Mixed Laplace approximation for marginal posterior and Bayesian
  inference in error-in-operator model
Mixed Laplace approximation for marginal posterior and Bayesian inference in error-in-operator model
V. Spokoiny
28
3
0
16 May 2023
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
37
21
0
10 Apr 2023
On the Approximation Accuracy of Gaussian Variational Inference
On the Approximation Accuracy of Gaussian Variational Inference
A. Katsevich
Philippe Rigollet
41
17
0
05 Jan 2023
How good is your Laplace approximation of the Bayesian posterior?
  Finite-sample computable error bounds for a variety of useful divergences
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
Mikolaj Kasprzak
Ryan Giordano
Tamara Broderick
33
4
0
29 Sep 2022
Normal approximation for the posterior in exponential families
Normal approximation for the posterior in exponential families
Adrian Fischer
Robert E. Gaunt
Gesine Reinert
Yvik Swan
20
5
0
19 Sep 2022
Finite samples inference and critical dimension for stochastically
  linear models
Finite samples inference and critical dimension for stochastically linear models
V. Spokoiny
36
2
0
17 Jan 2022
Laplace and Saddlepoint Approximations in High Dimensions
Laplace and Saddlepoint Approximations in High Dimensions
Yanbo Tang
Nancy Reid
16
7
0
22 Jul 2021
Posterior contraction rates for non-parametric state and drift
  estimation
Posterior contraction rates for non-parametric state and drift estimation
Sebastian Reich
P. Rozdeba
29
5
0
20 Mar 2020
1