Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.11010
Cited By
v1
v2 (latest)
GFCL: A GRU-based Federated Continual Learning Framework against Data Poisoning Attacks in IoV
23 April 2022
Anum Talpur
M. Gurusamy
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"GFCL: A GRU-based Federated Continual Learning Framework against Data Poisoning Attacks in IoV"
8 / 8 papers shown
Title
Adversarial Attacks Against Deep Reinforcement Learning Framework in Internet of Vehicles
Anum Talpur
G. Mohan
AAML
56
7
0
02 Aug 2021
Machine Learning for Security in Vehicular Networks: A Comprehensive Survey
Anum Talpur
M. Gurusamy
41
63
0
31 May 2021
Deep Reinforcement Learning for Autonomous Driving: A Survey
B. R. Kiran
Ibrahim Sobh
V. Talpaert
Patrick Mannion
A. A. Sallab
S. Yogamani
P. Pérez
352
1,687
0
02 Feb 2020
Challenges and Countermeasures for Adversarial Attacks on Deep Reinforcement Learning
Inaam Ilahi
Muhammad Usama
Junaid Qadir
M. Janjua
Ala I. Al-Fuqaha
D. Hoang
Dusit Niyato
AAML
127
135
0
27 Jan 2020
MULDEF: Multi-model-based Defense Against Adversarial Examples for Neural Networks
Siwakorn Srisakaokul
Yuhao Zhang
Zexuan Zhong
Wei Yang
Tao Xie
Bo Li
AAML
53
19
0
31 Aug 2018
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
61
950
0
14 Feb 2017
Adversarial Attacks on Neural Network Policies
Sandy Huang
Nicolas Papernot
Ian Goodfellow
Yan Duan
Pieter Abbeel
MLAU
AAML
102
837
0
08 Feb 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
148
2,533
0
26 Oct 2016
1