Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.10836
Cited By
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
22 April 2022
Sarthak Pati
Ujjwal Baid
Brandon Edwards
Micah J. Sheller
Shih-Han Wang
G. A. Reina
Patrick Foley
Alexey Gruzdev
Deepthi Karkada
Christos Davatzikos
C. Sako
S. Ghodasara
Michel Bilello
S. Mohan
Philipp Vollmuth
G. Brugnara
C. J. Preetha
F. Sahm
Klaus Maier-Hein
M. Zenk
Martin Bendszus
Wolfgang Wick
Evan Calabrese
J. Rudie
J. Villanueva-Meyer
S. Cha
M. Ingalhalikar
Manali Jadhav
Umang Pandey
Jitender Saini
J. Garrett
Matthew H. Larson
R. Jeraj
S. Currie
R. Frood
K. Fatania
Raymond Y. Huang
Ken Chang
C. Quintero
J. Capellades
J. Puig
J. Trenkler
J. Pichler
Georg Necker
Andreas Haunschmidt
S. Meckel
G. Shukla
Spencer Liem
G. Alexander
Joseph Lombardo
J. Palmer
Adam Flanders
A. Dicker
Haris I. Sair
Craig K. Jones
A. Venkataraman
Meirui Jiang
T. So
Cheng Chen
Pheng Ann Heng
Qi Dou
Michal Kozubek
F. Lux
Jan Michálek
P. Matula
Milovs Kevrkovský
Tereza Kopvrivová
Marek Dostál
Václav Vybíhal
M. Vogelbaum
J. R. Mitchell
Joaquim M Farinhas
J. Maldjian
C. Yogananda
Marco Pinho
Divya Reddy
J. Holcomb
B. Wagner
B. Ellingson
T. Cloughesy
Catalina Raymond
T. Oughourlian
A. Hagiwara
Chencai Wang
Minh-Son To
Sargam Bhardwaj
Chee Chong
M. Agzarian
A. X. Falcão
S. B. Martins
Bernardo C. A. Teixeira
Flávia Sprenger
David Menotti
D. Lucio
Pamela LaMontagne
Daniel S. Marcus
Benedikt Wiestler
Florian Kofler
Ivan Ezhov
M. Metz
Rajan Jain
Matthew C. H. Lee
Yvonne W. Lui
Richard McKinley
J. Slotboom
Piotr Radojewski
Raphael Meier
Roland Wiest
D. Murcia
Eric Fu
Rourke Haas
J. Thompson
D. Ormond
Chaitra Badve
A. Sloan
V. Vadmal
K. Waite
Rivka R Colen
Linmin Pei
M. Ak
A. Srinivasan
J. Bapuraj
Arvind Rao
Nicholas C. Wang
Ota Yoshiaki
T. Moritani
Sevcan Turk
Joonsan Lee
Snehal Prabhudesai
Fanny E. Moron
J. Mandel
Konstantinos Kamnitsas
Ben Glocker
Luke V. M. Dixon
Matthew Williams
P. Zampakis
V. Panagiotopoulos
P. Tsiganos
Sotiris Alexiou
Ilias Haliassos
E. Zacharaki
Konstantinos Moustakas
C. Kalogeropoulou
D. Kardamakis
Y. Choi
Seung-Koo Lee
Jong-Hee Chang
S. Ahn
Bing Luo
L. Poisson
Ning Wen
Pallavi Tiwari
R. Verma
R. Bareja
I. Yadav
Jonathan Chen
Neeraj Kumar
M. Smits
S. V. D. Voort
A. Alafandi
Fatih Incekara
M. Wijnenga
G. Kapsas
R. Gahrmann
J. Schouten
H. Dubbink
A. Vincent
M. Bent
P. French
Stefan Klein
Yading Yuan
Sonam Sharma
T. Tseng
S. Adabi
S. Niclou
O. Keunen
A. Hau
M. Vallières
D. Fortin
M. Lepage
Bennett Landman
Karthik Ramadass
Kaiwen Xu
Silky Chotai
L. Chambless
A. Mistry
Reid C. Thompson
Yuriy Gusev
K. Bhuvaneshwar
A. Sayah
Camelia Bencheqroun
A. Belouali
Subha Madhavan
Thomas C Booth
Alysha Chelliah
Marc Modat
Haris Shuaib
Carmen Dragos
Aly H. Abayazeed
K. Kolodziej
Michael Hill
A. Abbassy
S. Gamal
Mahmoud Mekhaimar
Mohamed Qayati
M. Reyes
Ji Eun Park
J. Yun
H. Kim
A. Mahajan
M. Muzi
Sean Benson
R. Beets-Tan
Jonas Teuwen
A. Herrera-Trujillo
M. Trujillo
W. Escobar
A. Abello
Jose Bernal
Jhonny C. Gómez
Josephine Choi
Stephen Seung-Yeob Baek
Yusung Kim
H. Ismael
B. Allen
John Buatti
Aikaterini Kotrotsou
Hongwei Bran Li
T. Weiss
M. Weller
A. Bink
Bertrand Pouymayou
Hassan F Shaykh
Joel H. Saltz
Prateek Prasanna
Sampurna Shrestha
K. M. Mani
David Payne
Tahsin M. Kurc
Enrique Peláez
Heydy Franco-Maldonado
Francis R. Loayza
Sebastián Quevedo
Pamela Guevara
Esteban Torche
C. Mendoza
Franco Vera
Elvis Ríos
E. López
S. Velastín
G. Ogbole
Dotun Oyekunle
O. Odafe-Oyibotha
B. Osobu
Mustapha Shu’aibu
Adeleye Dorcas
M. Soneye
Farouk Dako
Amber L. Simpson
M. Hamghalam
Jacob J. Peoples
Ricky Hu
A. Tran
D. Cutler
F. Moraes
M. Boss
James F. Gimpel
Deepak Kattil Veettil
Kendall Schmidt
Brian Bialecki
S. Marella
C. Price
Lisa Cimino
Charles Apgar
Prashant Shah
Bjoern H. Menze
J. Barnholtz-Sloan
Jason Martin
Spyridon Bakas
FedML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Learning Enables Big Data for Rare Cancer Boundary Detection"
22 / 22 papers shown
Title
Federated learning, ethics, and the double black box problem in medical AI
Joshua Hatherley
Anders Søgaard
Angela Ballantyne
Ruben Pauwels
FedML
58
0
0
29 Apr 2025
Advanced Deep Learning and Large Language Models: Comprehensive Insights for Cancer Detection
Yassine Habchi
Hamza Kheddar
Yassine Himeur
Adel Belouchrani
Erchin Serpedin
Fouad Khelifi
Muhammad E.H. Chowdhury
LM&MA
49
0
0
30 Mar 2025
Towards Active Participant Centric Vertical Federated Learning: Some Representations May Be All You Need
Jon Irureta
Jon Imaz
Aizea Lojo
Javier Fernandez-Marques
Marco González
Iñigo Perona
FedML
98
1
0
20 Feb 2025
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Zilinghan Li
Shilan He
Ze Yang
Minseok Ryu
Kibaek Kim
Ravi K. Madduri
FedML
66
7
0
17 Sep 2024
Federated and Transfer Learning for Cancer Detection Based on Image Analysis
Amine Bechar
Y. Elmir
Yassine Himeur
Rafik Medjoudj
Abbes Amira
MedIm
51
4
0
30 May 2024
Federated Hierarchical Tensor Networks: a Collaborative Learning Quantum AI-Driven Framework for Healthcare
A. Bhatia
David E. Bernal Neira
FedML
45
7
0
13 May 2024
Metadata-Driven Federated Learning of Connectional Brain Templates in Non-IID Multi-Domain Scenarios
Geng Chen
Qingyue Wang
I. Rekik
38
0
0
14 Mar 2024
Leveraging Federated Learning for Automatic Detection of Clopidogrel Treatment Failures
Samuel Kim
Min Sang Kim
FedML
30
0
0
05 Mar 2024
FedECA: A Federated External Control Arm Method for Causal Inference with Time-To-Event Data in Distributed Settings
Jean Ogier du Terrail
Quentin Klopfenstein
Honghao Li
Imke Mayer
Nicolas Loiseau
Mohammad Hallal
Félix Balazard
M. Andreux
18
2
0
28 Nov 2023
FedSoup: Improving Generalization and Personalization in Federated Learning via Selective Model Interpolation
Minghui Chen
Meirui Jiang
Qianming Dou
Zehua Wang
Xiaoxiao Li
FedML
35
16
0
20 Jul 2023
Medical Federated Model with Mixture of Personalized and Sharing Components
Yawei Zhao
Qinghe Liu
Xinwang Liu
K. He
FedML
OOD
18
2
0
26 Jun 2023
Federated Learning of Medical Concepts Embedding using BEHRT
Ofir Ben Shoham
Nadav Rappoport
FedML
OOD
24
12
0
22 May 2023
Fed-MIWAE: Federated Imputation of Incomplete Data via Deep Generative Models
Irene Balelli
Aude Sportisse
Francesco Cremonesi
Pierre-Alexandre Mattei
Marco Lorenzi
40
3
0
17 Apr 2023
Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review
Asim Waqas
Aakash Tripathi
Ravichandran Ramachandran
Paul Stewart
Ghulam Rasool
AI4CE
42
32
0
11 Mar 2023
Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging
Soroosh Tayebi Arasteh
Alexander Ziller
Christiane Kuhl
Marcus R. Makowski
S. Nebelung
R. Braren
Daniel Rueckert
Daniel Truhn
Georgios Kaissis
MedIm
39
18
0
03 Feb 2023
Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions
A. Rauniyar
D. Hagos
Debesh Jha
J. E. Haakegaard
Ulas Bagci
D. Rawat
Vladimir Vlassov
OOD
48
91
0
05 Aug 2022
SoK: Hardware-supported Trusted Execution Environments
Moritz Schneider
Ramya Jayaram Masti
Shweta Shinde
Srdjan Capkun
R. Perez
31
27
0
25 May 2022
MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation
Alexandros Karargyris
Renato Umeton
Micah J. Sheller
Alejandro Aristizabal
Johnu George
...
Poonam Yadav
Michael Rosenthal
M. Loda
Jason M. Johnson
Peter Mattson
FedML
49
73
0
29 Sep 2021
GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable End-to-End Clinical Workflows in Medical Imaging
Sarthak Pati
Siddhesh P. Thakur
İbrahim Ethem Hamamcı
Ujjwal Baid
Bhakti Baheti
...
D. Kontos
Alexandros Karargyris
Renato Umeton
Peter Mattson
Spyridon Bakas
LM&MA
MedIm
78
44
0
26 Feb 2021
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,712
0
18 Mar 2020
TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning
Fernando Pérez-García
Rachel Sparks
Sébastien Ourselin
MedIm
LM&MA
147
427
0
09 Mar 2020
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
114
395
0
08 Jun 2018
1