Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.10022
Cited By
Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions
21 April 2022
Andrew Jesson
A. Douglas
P. Manshausen
Maelys Solal
N. Meinshausen
P. Stier
Y. Gal
Uri Shalit
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions"
19 / 19 papers shown
Title
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
54
2
0
05 Nov 2024
Detecting and Measuring Confounding Using Causal Mechanism Shifts
Abbavaram Gowtham Reddy
Vineeth N Balasubramanian
CML
41
1
0
26 Sep 2024
Causal Machine Learning for Cost-Effective Allocation of Development Aid
Milan Kuzmanovic
Dennis Frauen
Tobias Hatt
Stefan Feuerriegel
29
6
0
30 Jan 2024
Continuous Treatment Effect Estimation Using Gradient Interpolation and Kernel Smoothing
Lokesh Nagalapatti
Akshay Iyer
Abir De
Sunita Sarawagi
CML
27
7
0
27 Jan 2024
A Neural Framework for Generalized Causal Sensitivity Analysis
Dennis Frauen
F. Imrie
Alicia Curth
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
31
10
0
27 Nov 2023
PWSHAP: A Path-Wise Explanation Model for Targeted Variables
Lucile Ter-Minassian
Oscar Clivio
Karla Diaz-Ordaz
R. Evans
Chris Holmes
26
1
0
26 Jun 2023
Ensembled Prediction Intervals for Causal Outcomes Under Hidden Confounding
Myrl G. Marmarelis
Greg Ver Steeg
Aram Galstyan
Fred Morstatter
CML
OOD
16
5
0
15 Jun 2023
Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
19
11
0
02 Jun 2023
Reliable Off-Policy Learning for Dosage Combinations
J. Schweisthal
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
OffRL
24
11
0
31 May 2023
Sharp Bounds for Generalized Causal Sensitivity Analysis
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
CML
33
18
0
26 May 2023
Pretrained Vision Models for Predicting High-Risk Breast Cancer Stage
Bonaventure F. P. Dossou
Yeno K. S. Gbenou
Miglanche Ghomsi Nono
24
2
0
19 Mar 2023
Robust Fitted-Q-Evaluation and Iteration under Sequentially Exogenous Unobserved Confounders
David Bruns-Smith
Angela Zhou
OffRL
18
9
0
01 Feb 2023
Using uncertainty-aware machine learning models to study aerosol-cloud interactions
Maelys Solal
Andrew Jesson
Y. Gal
A. Douglas
16
0
0
30 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
Time Series Causal Link Estimation under Hidden Confounding using Knockoff Interventions
V. T. Trifunov
M. Shadaydeh
Joachim Denzler
CML
BDL
26
3
0
23 Sep 2022
Normalizing Flows for Interventional Density Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
50
18
0
13 Sep 2022
AODisaggregation: toward global aerosol vertical profiles
S. Bouabid
D. Watson‐Parris
Sofija Stefanović
A. Nenes
Dino Sejdinovic
24
0
0
06 May 2022
Partial Identification of Dose Responses with Hidden Confounders
Myrl G. Marmarelis
E. Haddad
Andrew Jesson
N. Jahanshad
Aram Galstyan
Greg Ver Steeg
CML
33
7
0
24 Apr 2022
Stochastic Causal Programming for Bounding Treatment Effects
Kirtan Padh
Jakob Zeitler
David S. Watson
Matt J. Kusner
Ricardo M. A. Silva
Niki Kilbertus
CML
30
26
0
22 Feb 2022
1