38
11

Efficient Linear Attention for Fast and Accurate Keypoint Matching

Abstract

Recently Transformers have provided state-of-the-art performance in sparse matching, crucial to realize high-performance 3D vision applications. Yet, these Transformers lack efficiency due to the quadratic computational complexity of their attention mechanism. To solve this problem, we employ an efficient linear attention for the linear computational complexity. Then, we propose a new attentional aggregation that achieves high accuracy by aggregating both the global and local information from sparse keypoints. To further improve the efficiency, we propose the joint learning of feature matching and description. Our learning enables simpler and faster matching than Sinkhorn, often used in matching the learned descriptors from Transformers. Our method achieves competitive performance with only 0.84M learnable parameters against the bigger SOTAs, SuperGlue (12M parameters) and SGMNet (30M parameters), on three benchmarks, HPatch, ETH, and Aachen Day-Night.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.