56
3
v1v2 (latest)

Towards Generalizable Semantic Product Search by Text Similarity Pre-training on Search Click Logs

Abstract

Recently, semantic search has been successfully applied to e-commerce product search and the learned semantic space(s) for query and product encoding are expected to generalize to unseen queries or products. Yet, whether generalization can conveniently emerge has not been thoroughly studied in the domain thus far. In this paper, we examine several general-domain and domain-specific pre-trained Roberta variants and discover that general-domain fine-tuning does not help generalization, which aligns with the discovery of prior art. Proper domain-specific fine-tuning with clickstream data can lead to better model generalization, based on a bucketed analysis of a publicly available manual annotated query-product pair da

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.