ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.05136
  4. Cited By
SoK: Privacy Preserving Machine Learning using Functional Encryption:
  Opportunities and Challenges

SoK: Privacy Preserving Machine Learning using Functional Encryption: Opportunities and Challenges

11 April 2022
Prajwal Panzade
Daniel Takabi
ArXivPDFHTML

Papers citing "SoK: Privacy Preserving Machine Learning using Functional Encryption: Opportunities and Challenges"

2 / 2 papers shown
Title
Protecting Privacy in Federated Time Series Analysis: A Pragmatic
  Technology Review for Application Developers
Protecting Privacy in Federated Time Series Analysis: A Pragmatic Technology Review for Application Developers
Daniel Bachlechner
Ruben Hetfleisch
Stephan Krenn
Thomas Lorünser
Michael Rader
33
0
0
28 Aug 2024
Privacy-Preserving and Trustworthy Deep Learning for Medical Imaging
Privacy-Preserving and Trustworthy Deep Learning for Medical Imaging
Kiarash Sedghighadikolaei
Attila A Yavuz
44
1
0
29 Jun 2024
1