ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.03874
  4. Cited By

On-Policy Pixel-Level Grasping Across the Gap Between Simulation and Reality

8 April 2022
Dexin Wang
F. Chang
Chunsheng Liu
Rurui Yang
Nanjun Li
Hengqiang Huan
ArXivPDFHTML

Papers citing "On-Policy Pixel-Level Grasping Across the Gap Between Simulation and Reality"

3 / 3 papers shown
Title
ECNNs: Ensemble Learning Methods for Improving Planar Grasp Quality
  Estimation
ECNNs: Ensemble Learning Methods for Improving Planar Grasp Quality Estimation
Fadi M. Alladkani
James Akl
B. Çalli
10
3
0
01 May 2021
EGAD! an Evolved Grasping Analysis Dataset for diversity and
  reproducibility in robotic manipulation
EGAD! an Evolved Grasping Analysis Dataset for diversity and reproducibility in robotic manipulation
D. Morrison
Peter Corke
Jurgen Leitner
110
135
0
03 Mar 2020
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
446
15,645
0
02 Nov 2015
1