ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.03475
  4. Cited By
Solving ImageNet: a Unified Scheme for Training any Backbone to Top
  Results

Solving ImageNet: a Unified Scheme for Training any Backbone to Top Results

7 April 2022
T. Ridnik
Hussam Lawen
Emanuel Ben-Baruch
Asaf Noy
ArXivPDFHTML

Papers citing "Solving ImageNet: a Unified Scheme for Training any Backbone to Top Results"

42 / 42 papers shown
Title
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
154
5,158
0
10 Jan 2022
ResNet strikes back: An improved training procedure in timm
ResNet strikes back: An improved training procedure in timm
Ross Wightman
Hugo Touvron
Hervé Jégou
AI4TS
242
494
0
01 Oct 2021
VOLO: Vision Outlooker for Visual Recognition
VOLO: Vision Outlooker for Visual Recognition
Li-xin Yuan
Qibin Hou
Zihang Jiang
Jiashi Feng
Shuicheng Yan
ViT
101
325
0
24 Jun 2021
Knowledge distillation: A good teacher is patient and consistent
Knowledge distillation: A good teacher is patient and consistent
Lucas Beyer
Xiaohua Zhai
Amelie Royer
L. Markeeva
Rohan Anil
Alexander Kolesnikov
VLM
103
295
0
09 Jun 2021
ResMLP: Feedforward networks for image classification with
  data-efficient training
ResMLP: Feedforward networks for image classification with data-efficient training
Hugo Touvron
Piotr Bojanowski
Mathilde Caron
Matthieu Cord
Alaaeldin El-Nouby
...
Gautier Izacard
Armand Joulin
Gabriel Synnaeve
Jakob Verbeek
Hervé Jégou
VLM
75
663
0
07 May 2021
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
404
2,672
0
04 May 2021
ImageNet-21K Pretraining for the Masses
ImageNet-21K Pretraining for the Masses
T. Ridnik
Emanuel Ben-Baruch
Asaf Noy
Lihi Zelnik-Manor
SSeg
VLM
CLIP
282
701
0
22 Apr 2021
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference
Ben Graham
Alaaeldin El-Nouby
Hugo Touvron
Pierre Stock
Armand Joulin
Hervé Jégou
Matthijs Douze
ViT
64
788
0
02 Apr 2021
EfficientNetV2: Smaller Models and Faster Training
EfficientNetV2: Smaller Models and Faster Training
Mingxing Tan
Quoc V. Le
EgoV
115
2,696
0
01 Apr 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
432
21,392
0
25 Mar 2021
Transformer in Transformer
Transformer in Transformer
Kai Han
An Xiao
Enhua Wu
Jianyuan Guo
Chunjing Xu
Yunhe Wang
ViT
377
1,561
0
27 Feb 2021
Re-labeling ImageNet: from Single to Multi-Labels, from Global to
  Localized Labels
Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels
Sangdoo Yun
Seong Joon Oh
Byeongho Heo
Dongyoon Han
Junsuk Choe
Sanghyuk Chun
476
146
0
13 Jan 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
367
6,757
0
23 Dec 2020
Understanding the Difficulty of Training Transformers
Understanding the Difficulty of Training Transformers
Liyuan Liu
Xiaodong Liu
Jianfeng Gao
Weizhu Chen
Jiawei Han
AI4CE
57
255
0
17 Apr 2020
Designing Network Design Spaces
Designing Network Design Spaces
Ilija Radosavovic
Raj Prateek Kosaraju
Ross B. Girshick
Kaiming He
Piotr Dollár
GNN
100
1,682
0
30 Mar 2020
TResNet: High Performance GPU-Dedicated Architecture
TResNet: High Performance GPU-Dedicated Architecture
T. Ridnik
Hussam Lawen
Asaf Noy
Emanuel Ben-Baruch
Gilad Sharir
Itamar Friedman
OOD
65
213
0
30 Mar 2020
Circumventing Outliers of AutoAugment with Knowledge Distillation
Circumventing Outliers of AutoAugment with Knowledge Distillation
Longhui Wei
Anxiang Xiao
Lingxi Xie
Xin Chen
Xiaopeng Zhang
Qi Tian
58
62
0
25 Mar 2020
Compounding the Performance Improvements of Assembled Techniques in a
  Convolutional Neural Network
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
Jungkyu Lee
Taeryun Won
Tae Kwan Lee
Hyemin Lee
Geonmo Gu
K. Hong
76
57
0
17 Jan 2020
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
217
3,485
0
30 Sep 2019
Once-for-All: Train One Network and Specialize it for Efficient
  Deployment
Once-for-All: Train One Network and Specialize it for Efficient Deployment
Han Cai
Chuang Gan
Tianzhe Wang
Zhekai Zhang
Song Han
OOD
102
1,279
0
26 Aug 2019
Fixing the train-test resolution discrepancy
Fixing the train-test resolution discrepancy
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
113
422
0
14 Jun 2019
When Does Label Smoothing Help?
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
187
1,943
0
06 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
133
18,106
0
28 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
606
4,777
0
13 May 2019
Searching for MobileNetV3
Searching for MobileNetV3
Andrew G. Howard
Mark Sandler
Grace Chu
Liang-Chieh Chen
Bo Chen
...
Yukun Zhu
Ruoming Pang
Vijay Vasudevan
Quoc V. Le
Hartwig Adam
340
6,772
0
06 May 2019
Effective and Efficient Dropout for Deep Convolutional Neural Networks
Effective and Efficient Dropout for Deep Convolutional Neural Networks
Shaofeng Cai
Jinyang Gao
Gang Chen
Beng Chin Ooi
Wei Wang
Meihui Zhang
BDL
75
53
0
06 Apr 2019
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Yang You
Jing Li
Sashank J. Reddi
Jonathan Hseu
Sanjiv Kumar
Srinadh Bhojanapalli
Xiaodan Song
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
ODL
228
996
0
01 Apr 2019
MultiGrain: a unified image embedding for classes and instances
MultiGrain: a unified image embedding for classes and instances
Maxim Berman
Hervé Jégou
Andrea Vedaldi
Iasonas Kokkinos
Matthijs Douze
61
110
0
14 Feb 2019
Bag of Tricks for Image Classification with Convolutional Neural
  Networks
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
278
1,417
0
04 Dec 2018
DropBlock: A regularization method for convolutional networks
DropBlock: A regularization method for convolutional networks
Golnaz Ghiasi
Nayeon Lee
Quoc V. Le
105
914
0
30 Oct 2018
A Closer Look at Deep Learning Heuristics: Learning rate restarts,
  Warmup and Distillation
A Closer Look at Deep Learning Heuristics: Learning rate restarts, Warmup and Distillation
Akhilesh Deepak Gotmare
N. Keskar
Caiming Xiong
R. Socher
ODL
61
276
0
29 Oct 2018
Do Better ImageNet Models Transfer Better?
Do Better ImageNet Models Transfer Better?
Simon Kornblith
Jonathon Shlens
Quoc V. Le
OOD
MLT
155
1,327
0
23 May 2018
Averaging Weights Leads to Wider Optima and Better Generalization
Averaging Weights Leads to Wider Optima and Better Generalization
Pavel Izmailov
Dmitrii Podoprikhin
T. Garipov
Dmitry Vetrov
A. Wilson
FedML
MoMe
114
1,659
0
14 Mar 2018
How to Start Training: The Effect of Initialization and Architecture
How to Start Training: The Effect of Initialization and Architecture
Boris Hanin
David Rolnick
55
255
0
05 Mar 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
173
19,262
0
13 Jan 2018
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
273
9,759
0
25 Oct 2017
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
415
26,465
0
05 Sep 2017
Super-Convergence: Very Fast Training of Neural Networks Using Large
  Learning Rates
Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates
L. Smith
Nicholay Topin
AI4CE
84
522
0
23 Aug 2017
Improved Regularization of Convolutional Neural Networks with Cutout
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
109
3,764
0
15 Aug 2017
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,814
0
10 Dec 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
335
19,634
0
09 Mar 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.6K
39,509
0
01 Sep 2014
1