Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.02947
Cited By
Marrying Fairness and Explainability in Supervised Learning
6 April 2022
Przemyslaw A. Grabowicz
Nicholas Perello
Aarshee Mishra
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Marrying Fairness and Explainability in Supervised Learning"
9 / 9 papers shown
Title
Explanations as Bias Detectors: A Critical Study of Local Post-hoc XAI Methods for Fairness Exploration
Vasiliki Papanikou
Danae Pla Karidi
E. Pitoura
Emmanouil Panagiotou
Eirini Ntoutsi
29
0
0
01 May 2025
Whence Is A Model Fair? Fixing Fairness Bugs via Propensity Score Matching
Kewen Peng
Yicheng Yang
Hao Zhuo
30
0
0
23 Apr 2025
FairSense: Long-Term Fairness Analysis of ML-Enabled Systems
Yining She
Sumon Biswas
Christian Kastner
Eunsuk Kang
40
0
0
03 Jan 2025
Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle
Luca Deck
Astrid Schomacker
Timo Speith
Jakob Schöffer
Lena Kästner
Niklas Kühl
38
4
0
29 Apr 2024
Function Composition in Trustworthy Machine Learning: Implementation Choices, Insights, and Questions
Manish Nagireddy
Moninder Singh
Samuel C. Hoffman
Evaline Ju
K. Ramamurthy
Kush R. Varshney
22
1
0
17 Feb 2023
Explainable Global Fairness Verification of Tree-Based Classifiers
Stefano Calzavara
Lorenzo Cazzaro
Claudio Lucchese
Federico Marcuzzi
24
2
0
27 Sep 2022
Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models
Esma Balkir
S. Kiritchenko
I. Nejadgholi
Kathleen C. Fraser
21
36
0
08 Jun 2022
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
144
370
0
09 May 2020
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
201
2,082
0
24 Oct 2016
1