Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.02488
Cited By
Discovering and forecasting extreme events via active learning in neural operators
5 April 2022
Ethan Pickering
Stephen Guth
George Karniadakis
T. Sapsis
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Discovering and forecasting extreme events via active learning in neural operators"
21 / 21 papers shown
Title
LAPD: Langevin-Assisted Bayesian Active Learning for Physical Discovery
Cindy Xiangrui Kong
Haoyang Zheng
Guang Lin
AI4CE
47
0
0
04 Mar 2025
Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
Mario De Florio
Zongren Zou
Daniele E. Schiavazzi
George Karniadakis
31
3
0
13 Aug 2024
Active Learning for Neural PDE Solvers
Daniel Musekamp
Marimuthu Kalimuthu
David Holzmüller
Makoto Takamoto
Carlos Fernandez
AI4CE
54
4
0
02 Aug 2024
Evaluating the Role of Data Enrichment Approaches Towards Rare Event Analysis in Manufacturing
Chathurangi Shyalika
Ruwan Wickramarachchi
Fadi El Kalach
R. Harik
Amit Sheth
26
3
0
01 Jul 2024
Active search for Bifurcations
Y. M. Psarellis
T. Sapsis
Ioannis G. Kevrekidis
33
0
0
17 Jun 2024
Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning
Zongren Zou
Tingwei Meng
Paula Chen
Jérome Darbon
George Karniadakis
52
7
0
12 Apr 2024
Stochastic Latent Transformer: Efficient Modelling of Stochastically Forced Zonal Jets
Ira J. S. Shokar
R. Kerswell
Peter H. Haynes
24
3
0
25 Oct 2023
A generalized likelihood-weighted optimal sampling algorithm for rare-event probability quantification
Xianliang Gong
Yulin Pan
20
1
0
22 Oct 2023
Multi-Resolution Active Learning of Fourier Neural Operators
Shibo Li
Xin Yu
Wei W. Xing
Mike Kirby
Akil Narayan
Shandian Zhe
AI4CE
25
4
0
29 Sep 2023
A Comprehensive Survey on Rare Event Prediction
Chathurangi Shyalika
Ruwan Wickramarachchi
A. Sheth
AI4TS
34
15
0
20 Sep 2023
A Data-Driven Approach to Morphogenesis under Structural Instability
Yingjie Zhao
Zhiping Xu
AI4CE
11
2
0
23 Aug 2023
Evaluation of machine learning architectures on the quantification of epistemic and aleatoric uncertainties in complex dynamical systems
Stephen Guth
A. Mojahed
T. Sapsis
AI4CE
28
2
0
27 Jun 2023
Learning Functional Transduction
Mathieu Chalvidal
Thomas Serre
Rufin VanRullen
AI4CE
35
2
0
01 Feb 2023
Implementation of the Critical Wave Groups Method with Computational Fluid Dynamics and Neural Networks
K. Silva
K. Maki
15
3
0
24 Jan 2023
Improved generalization with deep neural operators for engineering systems: Path towards digital twin
Kazuma Kobayashi
James Daniell
S. B. Alam
AI4CE
36
20
0
17 Jan 2023
An adaptive multi-fidelity sampling framework for safety analysis of connected and automated vehicles
Xianliang Gong
Shuo Feng
Yulin Pan
57
6
0
25 Oct 2022
Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models
Ethan Pickering
T. Sapsis
24
6
0
27 Aug 2022
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Zongren Zou
Xuhui Meng
Apostolos F. Psaros
George Karniadakis
AI4CE
32
36
0
25 Aug 2022
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
220
2,287
0
18 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1