ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.02474
  4. Cited By
Generative Enriched Sequential Learning (ESL) Approach for Molecular
  Design via Augmented Domain Knowledge

Generative Enriched Sequential Learning (ESL) Approach for Molecular Design via Augmented Domain Knowledge

5 April 2022
M. S. Ghaemi
Karl Grantham
Isaac Tamblyn
Yifeng Li
H. K. Ooi
ArXivPDFHTML

Papers citing "Generative Enriched Sequential Learning (ESL) Approach for Molecular Design via Augmented Domain Knowledge"

4 / 4 papers shown
Title
ChemSpaceAL: An Efficient Active Learning Methodology Applied to
  Protein-Specific Molecular Generation
ChemSpaceAL: An Efficient Active Learning Methodology Applied to Protein-Specific Molecular Generation
Gregory W. Kyro
Anton Morgunov
Rafael I. Brent
Victor S. Batista
30
12
0
11 Sep 2023
CHA2: CHemistry Aware Convex Hull Autoencoder Towards Inverse Molecular
  Design
CHA2: CHemistry Aware Convex Hull Autoencoder Towards Inverse Molecular Design
M. S. Ghaemi
Hang Hu
A. Hu
H. K. Ooi
BDL
22
0
0
21 Feb 2023
Machine learning for the prediction of safe and biologically active
  organophosphorus molecules
Machine learning for the prediction of safe and biologically active organophosphorus molecules
Hangchen Hu
H. K. Ooi
M. S. Ghaemi
A. Hu
14
2
0
21 Feb 2023
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
194
633
0
29 Nov 2018
1