ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.02267
  4. Cited By
Multi-Agent Distributed Reinforcement Learning for Making Decentralized
  Offloading Decisions

Multi-Agent Distributed Reinforcement Learning for Making Decentralized Offloading Decisions

5 April 2022
Jing Tan
R. Khalili
Holger Karl
A. Hecker
    OffRL
ArXiv (abs)PDFHTML

Papers citing "Multi-Agent Distributed Reinforcement Learning for Making Decentralized Offloading Decisions"

7 / 7 papers shown
Title
Self-Driving Cars: A Survey
Self-Driving Cars: A Survey
C. Badue
Rânik Guidolini
Raphael V. Carneiro
Pedro Azevedo
Vinicius B. Cardoso
...
T. M. Paixão
Filipe Wall Mutz
Lucas Veronese
Thiago Oliveira-Santos
Alberto F. de Souza
LRM
124
952
0
14 Jan 2019
Mean Field Multi-Agent Reinforcement Learning
Mean Field Multi-Agent Reinforcement Learning
Yaodong Yang
Rui Luo
Minne Li
M. Zhou
Weinan Zhang
Jun Wang
AI4CE
69
575
0
15 Feb 2018
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
Marc Lanctot
V. Zambaldi
A. Gruslys
Angeliki Lazaridou
K. Tuyls
Julien Perolat
David Silver
T. Graepel
129
639
0
02 Nov 2017
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
Lantao Yu
Weinan Zhang
Jun Wang
Yong Yu
GAN
72
2,409
0
18 Sep 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.1K
11,664
0
06 Apr 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
414
17,615
0
17 Feb 2016
Training Very Deep Networks
Training Very Deep Networks
R. Srivastava
Klaus Greff
Jürgen Schmidhuber
165
1,687
0
22 Jul 2015
1