ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.00106
17
15

A Survey of Robust 3D Object Detection Methods in Point Clouds

31 March 2022
Walter Zimmer
E. Erçelik
Xingcheng Zhou
Xavier Jair Diaz Ortiz
Alois C. Knoll
    3DPC
ArXivPDFHTML
Abstract

The purpose of this work is to review the state-of-the-art LiDAR-based 3D object detection methods, datasets, and challenges. We describe novel data augmentation methods, sampling strategies, activation functions, attention mechanisms, and regularization methods. Furthermore, we list recently introduced normalization methods, learning rate schedules and loss functions. Moreover, we also cover advantages and limitations of 10 novel autonomous driving datasets. We evaluate novel 3D object detectors on the KITTI, nuScenes, and Waymo dataset and show their accuracy, speed, and robustness. Finally, we mention the current challenges in 3D object detection in LiDAR point clouds and list some open issues.

View on arXiv
Comments on this paper