Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.16577
Cited By
Calibrating constitutive models with full-field data via physics informed neural networks
30 March 2022
Craig M. Hamel
K. Long
S. Kramer
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Calibrating constitutive models with full-field data via physics informed neural networks"
17 / 17 papers shown
Title
Deterministic and statistical calibration of constitutive models from full-field data with parametric physics-informed neural networks
D. Anton
Jendrik-Alexander Tröger
Henning Wessels
Ulrich Römer
Alexander Henkes
Stefan Hartmann
AI4CE
83
4
0
28 May 2024
NN-EUCLID: deep-learning hyperelasticity without stress data
Prakash Thakolkaran
Akshay Joshi
Yiwen Zheng
Moritz Flaschel
L. Lorenzis
Siddhant Kumar
68
102
0
04 May 2022
Polyconvex anisotropic hyperelasticity with neural networks
Dominik K. Klein
Mauricio Fernández
Robert J. Martin
P. Neff
Oliver Weeger
68
153
0
20 Jun 2021
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
82
1,201
0
20 May 2021
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
103
39
0
03 May 2021
Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks
N. Sukumar
Ankit Srivastava
PINN
AI4CE
134
254
0
17 Apr 2021
The mixed deep energy method for resolving concentration features in finite strain hyperelasticity
J. Fuhg
N. Bouklas
PINN
AI4CE
65
94
0
15 Apr 2021
Meshless physics-informed deep learning method for three-dimensional solid mechanics
Diab W. Abueidda
Q. Lu
S. Koric
AI4CE
60
118
0
02 Dec 2020
Physics-Informed Neural Networks for Nonhomogeneous Material Identification in Elasticity Imaging
Enrui Zhang
Minglang Yin
George Karniadakis
70
66
0
02 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
141
916
0
28 Jul 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
67
225
0
10 Jun 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
238
786
0
13 Mar 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
174
540
0
11 Mar 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
103
297
0
13 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
547
42,639
0
03 Dec 2019
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,158
0
08 Oct 2019
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
1