ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.16437
  4. Cited By
Weakly supervised causal representation learning

Weakly supervised causal representation learning

30 March 2022
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
    OOD
    CML
ArXivPDFHTML

Papers citing "Weakly supervised causal representation learning"

50 / 81 papers shown
Title
Q-function Decomposition with Intervention Semantics with Factored Action Spaces
Q-function Decomposition with Intervention Semantics with Factored Action Spaces
Junkyu Lee
Tian Gao
Elliot Nelson
Miao Liu
D. Bhattacharjya
Songtao Lu
OffRL
45
0
0
30 Apr 2025
An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
Patrik Reizinger
Randall Balestriero
David Klindt
Wieland Brendel
40
0
0
17 Apr 2025
On the Identifiability of Causal Abstractions
Xiusi Li
Sékou-Oumar Kaba
Siamak Ravanbakhsh
CML
64
0
0
13 Mar 2025
I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data?
I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data?
Yuhang Liu
Dong Gong
Erdun Gao
Zhen Zhang
Zhen Zhang
Biwei Huang
Anton van den Hengel
Javen Qinfeng Shi
Javen Qinfeng Shi
157
0
0
12 Mar 2025
Sanity Checking Causal Representation Learning on a Simple Real-World System
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
Simon Bing
Jakob Runge
CML
57
0
0
27 Feb 2025
What is causal about causal models and representations?
What is causal about causal models and representations?
Frederik Hytting Jørgensen
Luigi Gresele
S. Weichwald
CML
107
0
0
31 Jan 2025
Contrastive Learning from Exploratory Actions: Leveraging Natural Interactions for Preference Elicitation
N. Dennler
Stefanos Nikolaidis
Maja J. Matarić
141
0
0
03 Jan 2025
Differentiable Causal Discovery For Latent Hierarchical Causal Models
Differentiable Causal Discovery For Latent Hierarchical Causal Models
Parjanya Prashant
Ignavier Ng
Anton van den Hengel
Zhen Zhang
CML
187
0
0
29 Nov 2024
Identifying Spatio-Temporal Drivers of Extreme Events
Identifying Spatio-Temporal Drivers of Extreme Events
Mohamad Hakam Shams Eddin
Juergen Gall
AI4TS
48
0
0
31 Oct 2024
Identifiability Guarantees for Causal Disentanglement from Purely
  Observational Data
Identifiability Guarantees for Causal Disentanglement from Purely Observational Data
Ryan Welch
Jiaqi Zhang
Caroline Uhler
CML
OOD
51
1
0
31 Oct 2024
Language Agents Meet Causality -- Bridging LLMs and Causal World Models
Language Agents Meet Causality -- Bridging LLMs and Causal World Models
John Gkountouras
Matthias Lindemann
Phillip Lippe
E. Gavves
Ivan Titov
LRM
28
0
0
25 Oct 2024
A Complexity-Based Theory of Compositionality
A Complexity-Based Theory of Compositionality
Eric Elmoznino
Thomas Jiralerspong
Yoshua Bengio
Guillaume Lajoie
CoGe
61
4
0
18 Oct 2024
Counterfactual Generative Modeling with Variational Causal Inference
Counterfactual Generative Modeling with Variational Causal Inference
Yulun Wu
Louie McConnell
Claudia Iriondo
CML
BDL
24
0
0
16 Oct 2024
Causal Representation Learning in Temporal Data via Single-Parent
  Decoding
Causal Representation Learning in Temporal Data via Single-Parent Decoding
Philippe Brouillard
Sébastien Lachapelle
Julia Kaltenborn
Yaniv Gurwicz
Dhanya Sridhar
Alexandre Drouin
Peer Nowack
Jakob Runge
David Rolnick
CML
37
3
0
09 Oct 2024
Sequential Representation Learning via Static-Dynamic Conditional
  Disentanglement
Sequential Representation Learning via Static-Dynamic Conditional Disentanglement
Mathieu Cyrille Simon
Pascal Frossard
Christophe De Vleeschouwer
CoGe
CML
31
1
0
10 Aug 2024
Unsupervised Object Detection with Theoretical Guarantees
Unsupervised Object Detection with Theoretical Guarantees
Marian Longa
Joao F. Henriques
45
0
0
11 Jun 2024
Identifiable Object-Centric Representation Learning via Probabilistic
  Slot Attention
Identifiable Object-Centric Representation Learning via Probabilistic Slot Attention
Avinash Kori
Francesco Locatello
Ainkaran Santhirasekaram
Francesca Toni
Ben Glocker
Fabio De Sousa Ribeiro
OCL
45
1
0
11 Jun 2024
Linear Causal Representation Learning from Unknown Multi-node
  Interventions
Linear Causal Representation Learning from Unknown Multi-node Interventions
Burak Varıcı
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
35
1
0
09 Jun 2024
Sparsity regularization via tree-structured environments for
  disentangled representations
Sparsity regularization via tree-structured environments for disentangled representations
Elliot Layne
Jason S. Hartford
Sébastien Lachapelle
Mathieu Blanchette
Dhanya Sridhar
OOD
CML
33
0
0
30 May 2024
Smoke and Mirrors in Causal Downstream Tasks
Smoke and Mirrors in Causal Downstream Tasks
Riccardo Cadei
Lukas Lindorfer
Sylvia Cremer
Cordelia Schmid
Francesco Locatello
CML
35
3
0
27 May 2024
Marrying Causal Representation Learning with Dynamical Systems for Science
Marrying Causal Representation Learning with Dynamical Systems for Science
Dingling Yao
Caroline Muller
Francesco Locatello
CML
AI4CE
42
6
0
22 May 2024
Causal Diffusion Autoencoders: Toward Counterfactual Generation via
  Diffusion Probabilistic Models
Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models
Aneesh Komanduri
Chengli Zhao
Feng Chen
Xintao Wu
CML
DiffM
35
5
0
27 Apr 2024
FilterPrompt: Guiding Image Transfer in Diffusion Models
FilterPrompt: Guiding Image Transfer in Diffusion Models
Xi Wang
Yichen Peng
Heng Fang
Haoran Xie
Xi Yang
Chuntao Li
DiffM
40
0
0
20 Apr 2024
Identifiable Latent Neural Causal Models
Identifiable Latent Neural Causal Models
Yuhang Liu
Zhen Zhang
Dong Gong
Biwei Huang
Erdun Gao
Anton Van Den Hengel
Anton van den Hengel
Javen Qinfeng Shi
CML
OOD
40
6
0
23 Mar 2024
Towards the Reusability and Compositionality of Causal Representations
Towards the Reusability and Compositionality of Causal Representations
Davide Talon
Phillip Lippe
Stuart James
Alessio Del Bue
Sara Magliacane
BDL
CML
41
4
0
14 Mar 2024
A Sparsity Principle for Partially Observable Causal Representation
  Learning
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
43
13
0
13 Mar 2024
Why Online Reinforcement Learning is Causal
Why Online Reinforcement Learning is Causal
Oliver Schulte
Pascal Poupart
CML
OffRL
30
1
0
07 Mar 2024
Implicit Causal Representation Learning via Switchable Mechanisms
Implicit Causal Representation Learning via Switchable Mechanisms
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
CML
49
0
0
16 Feb 2024
Learning Interpretable Concepts: Unifying Causal Representation Learning
  and Foundation Models
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models
Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
AI4CE
91
21
0
14 Feb 2024
Counterfactual Image Editing
Counterfactual Image Editing
Yushu Pan
Elias Bareinboim
BDL
CML
30
5
0
07 Feb 2024
Causal Representation Learning from Multiple Distributions: A General
  Setting
Causal Representation Learning from Multiple Distributions: A General Setting
Anton van den Hengel
Shaoan Xie
Ignavier Ng
Yujia Zheng
CML
OOD
29
18
0
07 Feb 2024
Invariance & Causal Representation Learning: Prospects and Limitations
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
Jonas Wahl
Urmi Ninad
Jakob Runge
CML
OOD
51
3
0
06 Dec 2023
An Interventional Perspective on Identifiability in Gaussian LTI Systems
  with Independent Component Analysis
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
Goutham Rajendran
Patrik Reizinger
Wieland Brendel
Pradeep Ravikumar
CML
37
8
0
29 Nov 2023
Self-Supervised Disentanglement by Leveraging Structure in Data
  Augmentations
Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations
Cian Eastwood
Julius von Kügelgen
Linus Ericsson
Diane Bouchacourt
Pascal Vincent
Bernhard Schölkopf
Mark Ibrahim
34
10
0
15 Nov 2023
Diffusion Based Causal Representation Learning
Diffusion Based Causal Representation Learning
Amir Mohammad Karimi Mamaghan
Andrea Dittadi
Stefan Bauer
Karl Henrik Johansson
Francesco Quinzan
CML
DiffM
27
0
0
09 Nov 2023
Towards a Unified Framework of Contrastive Learning for Disentangled
  Representations
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
31
4
0
08 Nov 2023
Multi-View Causal Representation Learning with Partial Observability
Multi-View Causal Representation Learning with Partial Observability
Dingling Yao
Danru Xu
Sébastien Lachapelle
Sara Magliacane
Perouz Taslakian
Georg Martius
Julius von Kügelgen
Francesco Locatello
CML
42
30
0
07 Nov 2023
Identifying Linearly-Mixed Causal Representations from Multi-Node
  Interventions
Identifying Linearly-Mixed Causal Representations from Multi-Node Interventions
Simon Bing
Urmi Ninad
Jonas Wahl
Jakob Runge
CML
15
5
0
05 Nov 2023
Object-centric architectures enable efficient causal representation
  learning
Object-centric architectures enable efficient causal representation learning
Amin Mansouri
Jason S. Hartford
Yan Zhang
Yoshua Bengio
CML
OCL
OOD
29
15
0
29 Oct 2023
C-Disentanglement: Discovering Causally-Independent Generative Factors
  under an Inductive Bias of Confounder
C-Disentanglement: Discovering Causally-Independent Generative Factors under an Inductive Bias of Confounder
Xiaoyu Liu
Jiaxin Yuan
Bang An
Yuancheng Xu
Yifan Yang
Furong Huang
CML
27
7
0
26 Oct 2023
Causal Representation Learning Made Identifiable by Grouping of
  Observational Variables
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
33
9
0
24 Oct 2023
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Yuhang Liu
Zhen Zhang
Dong Gong
Biwei Huang
Erdun Gao
Anton Van Den Hengel
Anton van den Hengel
Javen Qinfeng Shi
28
13
0
24 Oct 2023
General Identifiability and Achievability for Causal Representation
  Learning
General Identifiability and Achievability for Causal Representation Learning
Burak Varici
Emre Acartürk
Karthikeyan Shanmugam
A. Tajer
CML
37
17
0
24 Oct 2023
From Identifiable Causal Representations to Controllable Counterfactual
  Generation: A Survey on Causal Generative Modeling
From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling
Aneesh Komanduri
Xintao Wu
Yongkai Wu
Feng Chen
CML
OOD
31
7
0
17 Oct 2023
Do Not Marginalize Mechanisms, Rather Consolidate!
Do Not Marginalize Mechanisms, Rather Consolidate!
Moritz Willig
Matej Zečević
Devendra Singh Dhami
Kristian Kersting
22
1
0
12 Oct 2023
Identifying Representations for Intervention Extrapolation
Identifying Representations for Intervention Extrapolation
Sorawit Saengkyongam
Ezgi Ozyilkan
Pradeep Ravikumar
Niklas Pfister
Jonas Peters
CML
OOD
16
14
0
06 Oct 2023
Multi-Domain Causal Representation Learning via Weak Distributional
  Invariances
Multi-Domain Causal Representation Learning via Weak Distributional Invariances
Kartik Ahuja
Amin Mansouri
Yixin Wang
CML
OOD
21
10
0
04 Oct 2023
Shadow Datasets, New challenging datasets for Causal Representation
  Learning
Shadow Datasets, New challenging datasets for Causal Representation Learning
Jiageng Zhu
Hanchen Xie
Jianhua Wu
Jiazhi Li
Mahyar Khayatkhoei
Mohamed E. Hussein
Wael AbdAlmageed
27
2
0
10 Aug 2023
Identifiability Guarantees for Causal Disentanglement from Soft
  Interventions
Identifiability Guarantees for Causal Disentanglement from Soft Interventions
Jiaqi Zhang
C. Squires
Kristjan Greenewald
Akash Srivastava
Karthikeyan Shanmugam
Caroline Uhler
CML
51
53
0
12 Jul 2023
A Causal Ordering Prior for Unsupervised Representation Learning
A Causal Ordering Prior for Unsupervised Representation Learning
Avinash Kori
Pedro Sanchez
Konstantinos Vilouras
Ben Glocker
Sotirios A. Tsaftaris
BDL
SSL
CML
32
0
0
11 Jul 2023
12
Next