ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.15402
  4. Cited By
Physics-informed deep-learning applications to experimental fluid
  mechanics

Physics-informed deep-learning applications to experimental fluid mechanics

29 March 2022
Hamidreza Eivazi
Yuning Wang
Ricardo Vinuesa
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Physics-informed deep-learning applications to experimental fluid mechanics"

10 / 10 papers shown
Title
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
81
0
0
25 Apr 2025
Prediction of flow and elastic stresses in a viscoelastic turbulent
  channel flow using convolutional neural networks
Prediction of flow and elastic stresses in a viscoelastic turbulent channel flow using convolutional neural networks
Arivazhagan G. Balasubramanian
Ricardo Vinuesa
O. Tammisola
26
0
0
22 Apr 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
26
17
0
05 Jan 2024
Unveiling the frontiers of deep learning: innovations shaping diverse domains
Unveiling the frontiers of deep learning: innovations shaping diverse domains
Shams Forruque Ahmed
Md. Sakib Bin Alam
Maliha Kabir
Shaila Afrin
Sabiha Jannat Rafa
Aanushka Mehjabin
Amir H. Gandomi
AI4CE
42
2
0
06 Sep 2023
Physics-Informed Computer Vision: A Review and Perspectives
Physics-Informed Computer Vision: A Review and Perspectives
C. Banerjee
Kien Nguyen
Clinton Fookes
G. Karniadakis
PINN
AI4CE
34
29
0
29 May 2023
The transformative potential of machine learning for experiments in
  fluid mechanics
The transformative potential of machine learning for experiments in fluid mechanics
Ricardo Vinuesa
Steven L. Brunton
B. McKeon
AI4CE
35
68
0
28 Mar 2023
Physics-Informed CNNs for Super-Resolution of Sparse Observations on
  Dynamical Systems
Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems
Daniel Kelshaw
Georgios Rigas
Luca Magri
AI4CE
37
17
0
31 Oct 2022
Thermodynamics-informed neural networks for physically realistic mixed
  reality
Thermodynamics-informed neural networks for physically realistic mixed reality
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
22
16
0
24 Oct 2022
Improving aircraft performance using machine learning: a review
Improving aircraft performance using machine learning: a review
S. L. Clainche
E. Ferrer
Sam Gibson
Elisabeth Cross
A. Parente
Ricardo Vinuesa
AI4CE
28
93
0
20 Oct 2022
Enhancing Computational Fluid Dynamics with Machine Learning
Enhancing Computational Fluid Dynamics with Machine Learning
Ricardo Vinuesa
Steven L. Brunton
AI4CE
114
355
0
05 Oct 2021
1