Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.15071
Cited By
User Driven Model Adjustment via Boolean Rule Explanations
28 March 2022
Elizabeth M. Daly
Massimiliano Mattetti
Öznur Alkan
Rahul Nair
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"User Driven Model Adjustment via Boolean Rule Explanations"
9 / 9 papers shown
Title
Toward Machine-Guided, Human-Initiated Explanatory Interactive Learning
Teodora Popordanoska
Mohit Kumar
Stefano Teso
34
1
0
20 Jul 2020
Explainable Active Learning (XAL): An Empirical Study of How Local Explanations Impact Annotator Experience
Bhavya Ghai
Q. V. Liao
Yunfeng Zhang
Rachel K. E. Bellamy
Klaus Mueller
44
29
0
24 Jan 2020
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P. Schramowski
Wolfgang Stammer
Stefano Teso
Anna Brugger
Xiaoting Shao
Hans-Georg Luigs
Anne-Katrin Mahlein
Kristian Kersting
74
207
0
15 Jan 2020
Auditing and Debugging Deep Learning Models via Decision Boundaries: Individual-level and Group-level Analysis
Roozbeh Yousefzadeh
D. O’Leary
AAML
FAtt
29
5
0
03 Jan 2020
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques
Vijay Arya
Rachel K. E. Bellamy
Pin-Yu Chen
Amit Dhurandhar
Michael Hind
...
Karthikeyan Shanmugam
Moninder Singh
Kush R. Varshney
Dennis L. Wei
Yunfeng Zhang
XAI
26
391
0
06 Sep 2019
Boolean Decision Rules via Column Generation
S. Dash
Oktay Gunluk
Dennis L. Wei
47
174
0
24 May 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
91
587
0
21 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
83
3,922
0
06 Feb 2018
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
587
16,828
0
16 Feb 2016
1