Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.15015
Cited By
Deep Interactive Learning-based ovarian cancer segmentation of H&E-stained whole slide images to study morphological patterns of BRCA mutation
28 March 2022
D. J. Ho
M. Chui
Chad M. Vanderbilt
J. Jung
M. Robson
Chan-Sik Park
Jin Roh
Thomas J. Fuchs
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Interactive Learning-based ovarian cancer segmentation of H&E-stained whole slide images to study morphological patterns of BRCA mutation"
5 / 5 papers shown
Title
Ovarian Cancer Data Analysis using Deep Learning: A Systematic Review from the Perspectives of Key Features of Data Analysis and AI Assurance
Muta Tah Hira
M. Razzaque
Mosharraf Sarker
29
0
0
20 Nov 2023
Deep Learning-Based Prediction of Molecular Tumor Biomarkers from H&E: A Practical Review
Heather D. Couture
50
20
0
27 Nov 2022
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
340
10,633
0
19 Feb 2017
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
448
15,652
0
02 Nov 2015
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
301
39,238
0
01 Sep 2014
1