Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.14046
Cited By
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
26 March 2022
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies"
50 / 80 papers shown
Title
Learning in High Dimension Always Amounts to Extrapolation
Randall Balestriero
J. Pesenti
Yann LeCun
106
104
0
18 Oct 2021
Improving Model Robustness with Latent Distribution Locally and Globally
Zhuang Qian
Shufei Zhang
Kaizhu Huang
Qiufeng Wang
Rui Zhang
Xinping Yi
AAML
38
14
0
08 Jul 2021
Reliably fast adversarial training via latent adversarial perturbation
Geon Yeong Park
Sang Wan Lee
AAML
56
28
0
04 Apr 2021
Understanding and Improving Fast Adversarial Training
Maksym Andriushchenko
Nicolas Flammarion
AAML
68
288
0
06 Jul 2020
RayS: A Ray Searching Method for Hard-label Adversarial Attack
Jinghui Chen
Quanquan Gu
AAML
50
138
0
23 Jun 2020
Towards Robust Pattern Recognition: A Review
Xu-Yao Zhang
Cheng-Lin Liu
C. Suen
OOD
HAI
52
107
0
12 Jun 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
94
800
0
26 Feb 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
56
402
0
26 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
61
64
0
11 Feb 2020
Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturbations
Florian Tramèr
Jens Behrmann
Nicholas Carlini
Nicolas Papernot
J. Jacobsen
AAML
SILM
38
93
0
11 Feb 2020
Robust Generalization via
α
α
α
-Mutual Information
A. Esposito
Michael C. Gastpar
Ibrahim Issa
36
8
0
14 Jan 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
134
1,175
0
12 Jan 2020
Square Attack: a query-efficient black-box adversarial attack via random search
Maksym Andriushchenko
Francesco Croce
Nicolas Flammarion
Matthias Hein
AAML
73
983
0
29 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
50
105
0
13 Nov 2019
Robust Local Features for Improving the Generalization of Adversarial Training
Chuanbiao Song
Kun He
Jiadong Lin
Liwei Wang
John E. Hopcroft
OOD
AAML
41
69
0
23 Sep 2019
Metric Learning for Adversarial Robustness
Chengzhi Mao
Ziyuan Zhong
Junfeng Yang
Carl Vondrick
Baishakhi Ray
OOD
59
185
0
03 Sep 2019
Robust Learning with Jacobian Regularization
Judy Hoffman
Daniel A. Roberts
Sho Yaida
OOD
AAML
48
167
0
07 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
59
230
0
24 Jul 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
84
487
0
03 Jul 2019
Adversarially Robust Generalization Just Requires More Unlabeled Data
Runtian Zhai
Tianle Cai
Di He
Chen Dan
Kun He
John E. Hopcroft
Liwei Wang
66
156
0
03 Jun 2019
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
Yuzhe Yang
Guo Zhang
Dina Katabi
Zhi Xu
AAML
79
170
0
28 May 2019
Provable robustness against all adversarial
l
p
l_p
l
p
-perturbations for
p
≥
1
p\geq 1
p
≥
1
Francesco Croce
Matthias Hein
OOD
49
75
0
27 May 2019
Interpreting Adversarially Trained Convolutional Neural Networks
Tianyuan Zhang
Zhanxing Zhu
AAML
GAN
FAtt
86
161
0
23 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
87
1,836
0
06 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
122
1,242
0
29 Apr 2019
Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness
J. Jacobsen
Jens Behrmann
Nicholas Carlini
Florian Tramèr
Nicolas Papernot
AAML
48
46
0
25 Mar 2019
Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes
Matt Jordan
Justin Lewis
A. Dimakis
AAML
66
57
0
20 Mar 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
60
437
0
25 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
118
2,542
0
24 Jan 2019
Bilateral Adversarial Training: Towards Fast Training of More Robust Models Against Adversarial Attacks
Jianyu Wang
Haichao Zhang
OOD
AAML
77
119
0
26 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
55
166
0
01 Nov 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
93
1,776
0
30 May 2018
Adversarial Noise Layer: Regularize Neural Network By Adding Noise
Zhonghui You
Jinmian Ye
Kunming Li
Zenglin Xu
Ping Wang
49
77
0
21 May 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
82
1,176
0
17 May 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
131
789
0
30 Apr 2018
Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations
Alex Lamb
Jonathan Binas
Anirudh Goyal
Dmitriy Serdyuk
Sandeep Subramanian
Ioannis Mitliagkas
Yoshua Bengio
OOD
69
43
0
07 Apr 2018
Stochastic Activation Pruning for Robust Adversarial Defense
Guneet Singh Dhillon
Kamyar Azizzadenesheli
Zachary Chase Lipton
Jeremy Bernstein
Jean Kossaifi
Aran Khanna
Anima Anandkumar
AAML
62
546
0
05 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
185
3,180
0
01 Feb 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
76
467
0
31 Jan 2018
Spatially Transformed Adversarial Examples
Chaowei Xiao
Jun-Yan Zhu
Yue Liu
Warren He
M. Liu
D. Song
AAML
70
522
0
08 Jan 2018
Generating Adversarial Examples with Adversarial Networks
Chaowei Xiao
Yue Liu
Jun-Yan Zhu
Warren He
M. Liu
D. Song
GAN
AAML
115
896
0
08 Jan 2018
Adversarial Examples: Attacks and Defenses for Deep Learning
Xiaoyong Yuan
Pan He
Qile Zhu
Xiaolin Li
SILM
AAML
86
1,618
0
19 Dec 2017
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
65
1,342
0
12 Dec 2017
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
99
1,054
0
06 Nov 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
90
1,498
0
02 Nov 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
102
1,400
0
31 Oct 2017
Generating Natural Adversarial Examples
Zhengli Zhao
Dheeru Dua
Sameer Singh
GAN
AAML
158
599
0
31 Oct 2017
One pixel attack for fooling deep neural networks
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
109
2,320
0
24 Oct 2017
Mixed Precision Training
Paulius Micikevicius
Sharan Narang
Jonah Alben
G. Diamos
Erich Elsen
...
Boris Ginsburg
Michael Houston
Oleksii Kuchaiev
Ganesh Venkatesh
Hao Wu
149
1,792
0
10 Oct 2017
1
2
Next