Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.11912
Cited By
What can we Learn Even From the Weakest? Learning Sketches for Programmatic Strategies
22 March 2022
L. C. Medeiros
David S. Aleixo
Levi H. S. Lelis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What can we Learn Even From the Weakest? Learning Sketches for Programmatic Strategies"
10 / 10 papers shown
Title
InnateCoder: Learning Programmatic Options with Foundation Models
Rubens O. Moraes
Quazi Asif Sadmine
Hendrik Baier
Levi H. S. Lelis
OffRL
7
0
0
18 May 2025
Reclaiming the Source of Programmatic Policies: Programmatic versus Latent Spaces
Tales H. Carvalho
Kenneth Tjhia
Levi H. S. Lelis
42
7
0
16 Oct 2024
KnowPC: Knowledge-Driven Programmatic Reinforcement Learning for Zero-shot Coordination
Yin Gu
Qi Liu
Zhi Li
Kai Zhang
36
0
0
08 Aug 2024
Searching for Programmatic Policies in Semantic Spaces
Rubens O. Moraes
Levi H. S. Lelis
40
4
0
08 May 2024
Assessing the Interpretability of Programmatic Policies with Large Language Models
Zahra Bashir
Michael Bowling
Levi H. S. Lelis
ELM
21
3
0
12 Nov 2023
Synthesizing Programmatic Policies with Actor-Critic Algorithms and ReLU Networks
S. Orfanos
Levi H. S. Lelis
27
6
0
04 Aug 2023
Reinforcement Learning and Data-Generation for Syntax-Guided Synthesis
Julian Parsert
Elizabeth Polgreen
33
3
0
13 Jul 2023
Can You Improve My Code? Optimizing Programs with Local Search
Fatemeh Abdollahi
Saqib Ameen
Matthew E. Taylor
Levi H. S. Lelis
22
0
0
10 Jul 2023
Choosing Well Your Opponents: How to Guide the Synthesis of Programmatic Strategies
Rubens O. Moraes
David S. Aleixo
Lucas N. Ferreira
Levi H. S. Lelis
16
7
0
10 Jul 2023
Programmatic Imitation Learning from Unlabeled and Noisy Demonstrations
Jimmy Xin
Linus Zheng
Kia Rahmani
Jiayi Wei
Jarrett Holtz
Işıl Dillig
Joydeep Biswas
30
1
0
02 Mar 2023
1