ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.10807
  4. Cited By
ViM: Out-Of-Distribution with Virtual-logit Matching

ViM: Out-Of-Distribution with Virtual-logit Matching

21 March 2022
Haoqi Wang
Zhizhong Li
Xue Jiang
Wayne Zhang
    OODD
ArXiv (abs)PDFHTMLGithub (86★)

Papers citing "ViM: Out-Of-Distribution with Virtual-logit Matching"

50 / 50 papers shown
Title
Mahalanobis++: Improving OOD Detection via Feature Normalization
Mahalanobis++: Improving OOD Detection via Feature Normalization
Maximilian Mueller
Matthias Hein
OODD
122
1
0
23 May 2025
TULiP: Test-time Uncertainty Estimation via Linearization and Weight Perturbation
TULiP: Test-time Uncertainty Estimation via Linearization and Weight Perturbation
Yuhui Zhang
Dongshen Wu
Yuichiro Wada
Takafumi Kanamori
OODD
236
1
0
22 May 2025
VisTa: Visual-contextual and Text-augmented Zero-shot Object-level OOD Detection
VisTa: Visual-contextual and Text-augmented Zero-shot Object-level OOD Detection
Bin Zhang
Xiaoyang Qu
Guokuan Li
Jiguang Wan
Jianzong Wang
VLM
140
1
0
28 Mar 2025
OT-DETECTOR: Delving into Optimal Transport for Zero-shot Out-of-Distribution Detection
OT-DETECTOR: Delving into Optimal Transport for Zero-shot Out-of-Distribution Detection
Yu Liu
Hao Tang
Haiqi Zhang
Jing Qin
Zechao Li
OODD
110
2
0
09 Mar 2025
CADRef: Robust Out-of-Distribution Detection via Class-Aware Decoupled Relative Feature Leveraging
Zhiwei Ling
Yachen Chang
Hailiang Zhao
Xinkui Zhao
Kingsum Chow
Shuiguang Deng
OODD
134
1
0
01 Mar 2025
Provably Safeguarding a Classifier from OOD and Adversarial Samples: an Extreme Value Theory Approach
Provably Safeguarding a Classifier from OOD and Adversarial Samples: an Extreme Value Theory Approach
Nicolas Atienza
Christophe Labreuche
Johanne Cohen
Michele Sebag
OODDAAML
438
0
0
20 Jan 2025
From Open Vocabulary to Open World: Teaching Vision Language Models to Detect Novel Objects
From Open Vocabulary to Open World: Teaching Vision Language Models to Detect Novel Objects
Zizhao Li
Zhengkang Xiang
Joseph West
Kourosh Khoshelham
ObjDVLM
172
1
0
27 Nov 2024
Going Beyond Conventional OOD Detection
Sudarshan Regmi
OODD
121
1
0
16 Nov 2024
Deep Active Learning in the Open World
Deep Active Learning in the Open World
Tian Xie
Jifan Zhang
Haoyue Bai
R. Nowak
VLM
414
3
0
10 Nov 2024
PViT: Prior-augmented Vision Transformer for Out-of-distribution Detection
PViT: Prior-augmented Vision Transformer for Out-of-distribution Detection
Tianhao Zhang
Zhixiang Chen
Lyudmila Mihaylova
302
0
0
27 Oct 2024
Reflexive Guidance: Improving OoDD in Vision-Language Models via Self-Guided Image-Adaptive Concept Generation
Reflexive Guidance: Improving OoDD in Vision-Language Models via Self-Guided Image-Adaptive Concept Generation
Seulbi Lee
J. Kim
Sangheum Hwang
LRM
449
2
0
19 Oct 2024
Multi-Robot Motion Planning with Diffusion Models
Multi-Robot Motion Planning with Diffusion Models
Yorai Shaoul
Itamar Mishani
Shivam Vats
Jiaoyang Li
Maxim Likhachev
DiffM
115
8
0
04 Oct 2024
Uncertainty-Guided Appearance-Motion Association Network for Out-of-Distribution Action Detection
Uncertainty-Guided Appearance-Motion Association Network for Out-of-Distribution Action Detection
Xiang Fang
Arvind Easwaran
B. Genest
82
4
0
16 Sep 2024
Proto-OOD: Enhancing OOD Object Detection with Prototype Feature Similarity
Proto-OOD: Enhancing OOD Object Detection with Prototype Feature Similarity
Junkun Chen
Jilin Mei
Liang Chen
Fangzhou Zhao
Yu Hu
Yu Hu
ObjD
115
1
0
09 Sep 2024
Diffusion based Semantic Outlier Generation via Nuisance Awareness for Out-of-Distribution Detection
Diffusion based Semantic Outlier Generation via Nuisance Awareness for Out-of-Distribution Detection
Suhee Yoon
Sanghyu Yoon
Ye Seul Sim
Sungik Choi
Kyungeun Lee
Hye-Seung Cho
Hankook Lee
Woohyung Lim
69
0
0
27 Aug 2024
Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors
Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors
Peter Lorenz
Mario Fernandez
Jens Müller
Ullrich Kothe
AAML
201
1
0
21 Jun 2024
Pursuing Feature Separation based on Neural Collapse for Out-of-Distribution Detection
Pursuing Feature Separation based on Neural Collapse for Out-of-Distribution Detection
Yingwen Wu
Ruiji Yu
Xinwen Cheng
Zhengbao He
Xiaolin Huang
OODD
109
4
0
28 May 2024
Energy-based Hopfield Boosting for Out-of-Distribution Detection
Energy-based Hopfield Boosting for Out-of-Distribution Detection
Claus Hofmann
Simon Schmid
Bernhard Lehner
Daniel Klotz
Sepp Hochreiter
OODD
93
9
0
14 May 2024
Kernel PCA for Out-of-Distribution Detection
Kernel PCA for Out-of-Distribution Detection
Kun Fang
Qinghua Tao
Kexin Lv
Mingzhen He
Xiaolin Huang
Jie Yang
OODD
116
4
0
05 Feb 2024
Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition
Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition
Chong Wang
Yuanhong Chen
Fengbei Liu
Yuyuan Liu
Davis J. McCarthy
Helen Frazer
Gustavo Carneiro
124
1
0
30 Nov 2023
ReAct: Out-of-distribution Detection With Rectified Activations
ReAct: Out-of-distribution Detection With Rectified Activations
Yiyou Sun
Chuan Guo
Yixuan Li
OODD
115
485
0
24 Nov 2021
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
301
943
0
21 Oct 2021
On the Importance of Gradients for Detecting Distributional Shifts in
  the Wild
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
Rui Huang
Andrew Geng
Yixuan Li
292
354
0
01 Oct 2021
Semantically Coherent Out-of-Distribution Detection
Semantically Coherent Out-of-Distribution Detection
Jingkang Yang
Haoqi Wang
Xue Jiang
Xiaopeng Yan
Huabin Zheng
Wayne Zhang
Ziwei Liu
OODD
95
131
0
26 Aug 2021
NGC: A Unified Framework for Learning with Open-World Noisy Data
NGC: A Unified Framework for Learning with Open-World Noisy Data
Zhi-Fan Wu
Tong Wei
Jianwen Jiang
Chaojie Mao
Mingqian Tang
Yu-Feng Li
51
84
0
25 Aug 2021
Do Vision Transformers See Like Convolutional Neural Networks?
Do Vision Transformers See Like Convolutional Neural Networks?
M. Raghu
Thomas Unterthiner
Simon Kornblith
Chiyuan Zhang
Alexey Dosovitskiy
ViT
140
964
0
19 Aug 2021
Exploring the Limits of Out-of-Distribution Detection
Exploring the Limits of Out-of-Distribution Detection
Stanislav Fort
Jie Jessie Ren
Balaji Lakshminarayanan
91
339
0
06 Jun 2021
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic
  Space
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
Rui Huang
Yixuan Li
OODD
93
249
0
05 May 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
470
21,603
0
25 Mar 2021
RepVGG: Making VGG-style ConvNets Great Again
RepVGG: Making VGG-style ConvNets Great Again
Xiaohan Ding
Xinming Zhang
Ningning Ma
Jungong Han
Guiguang Ding
Jian Sun
295
1,603
0
11 Jan 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
389
6,813
0
23 Dec 2020
Out-Of-Distribution Detection With Subspace Techniques And Probabilistic
  Modeling Of Features
Out-Of-Distribution Detection With Subspace Techniques And Probabilistic Modeling Of Features
I. Ndiour
Nilesh A. Ahuja
Omesh Tickoo
OODD
48
26
0
08 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
684
41,563
0
22 Oct 2020
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
273
1,375
0
08 Oct 2020
Outlier Detection through Null Space Analysis of Neural Networks
Outlier Detection through Null Space Analysis of Neural Networks
Matthew Cook
A. Zare
P. Gader
52
18
0
02 Jul 2020
Generalized ODIN: Detecting Out-of-distribution Image without Learning
  from Out-of-distribution Data
Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
Yen-Chang Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
111
577
0
26 Feb 2020
Big Transfer (BiT): General Visual Representation Learning
Big Transfer (BiT): General Visual Representation Learning
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
J. Puigcerver
Jessica Yung
Sylvain Gelly
N. Houlsby
MQ
288
1,211
0
24 Dec 2019
Scaling Out-of-Distribution Detection for Real-World Settings
Scaling Out-of-Distribution Detection for Real-World Settings
Dan Hendrycks
Steven Basart
Mantas Mazeika
Andy Zou
Joe Kwon
Mohammadreza Mostajabi
Jacob Steinhardt
Basel Alomair
OODD
202
486
0
25 Nov 2019
Unsupervised Out-of-Distribution Detection by Maximum Classifier
  Discrepancy
Unsupervised Out-of-Distribution Detection by Maximum Classifier Discrepancy
Qing Yu
Kiyoharu Aizawa
OODD
63
168
0
14 Aug 2019
Natural Adversarial Examples
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
Basel Alomair
OODD
236
1,484
0
16 Jul 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
185
1,487
0
11 Dec 2018
Bag of Tricks for Image Classification with Convolutional Neural
  Networks
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
293
1,421
0
04 Dec 2018
Reducing Network Agnostophobia
Reducing Network Agnostophobia
A. Dhamija
Manuel Günther
Terrance E. Boult
AAMLUQCV
84
305
0
09 Nov 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and
  Adversarial Attacks
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
199
2,064
0
10 Jul 2018
Learning Confidence for Out-of-Distribution Detection in Neural Networks
Learning Confidence for Out-of-Distribution Detection in Neural Networks
Terrance Devries
Graham W. Taylor
OODOODD
88
592
0
13 Feb 2018
Training Confidence-calibrated Classifiers for Detecting
  Out-of-Distribution Samples
Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee
Honglak Lee
Kibok Lee
Jinwoo Shin
OODD
131
882
0
26 Nov 2017
Enhancing The Reliability of Out-of-distribution Image Detection in
  Neural Networks
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
Shiyu Liang
Yixuan Li
R. Srikant
UQCVOODD
171
2,082
0
08 Jun 2017
Unsupervised Anomaly Detection with Generative Adversarial Networks to
  Guide Marker Discovery
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedImGAN
114
2,235
0
17 Mar 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
179
3,482
0
07 Oct 2016
Describing Textures in the Wild
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
151
2,695
0
14 Nov 2013
1