ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.10212
11
5

Unsupervised Learning of 3D Semantic Keypoints with Mutual Reconstruction

19 March 2022
Haocheng Yuan
Chen Zhao
Shichao Fan
Jiaxi Jiang
Jiaqi Yang
    3DV
    3DPC
ArXivPDFHTML
Abstract

Semantic 3D keypoints are category-level semantic consistent points on 3D objects. Detecting 3D semantic keypoints is a foundation for a number of 3D vision tasks but remains challenging, due to the ambiguity of semantic information, especially when the objects are represented by unordered 3D point clouds. Existing unsupervised methods tend to generate category-level keypoints in implicit manners, making it difficult to extract high-level information, such as semantic labels and topology. From a novel mutual reconstruction perspective, we present an unsupervised method to generate consistent semantic keypoints from point clouds explicitly. To achieve this, the proposed model predicts keypoints that not only reconstruct the object itself but also reconstruct other instances in the same category. To the best of our knowledge, the proposed method is the first to mine 3D semantic consistent keypoints from a mutual reconstruction view. Experiments under various evaluation metrics as well as comparisons with the state-of-the-arts demonstrate the efficacy of our new solution to mining semantic consistent keypoints with mutual reconstruction.

View on arXiv
Comments on this paper